Skip to main content

Syringolin A: Action on Plants, Regulation of Biosynthesis and Phylogenetic Occurrence of Structurally Related Compounds

  • Chapter
Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics

Syringolin A, the product of a mixed non-ribosomal peptide/polyketide synthetase, is secreted by Pseudomonas syringae pv. syringae under in planta conditions and is one of the molecular determinants recognized by nonhost plant species. Spray application of syringolin A onto powdery mildew-infected wheat and Arabidopsis has the remarkable effect of reprogramming epidermal cells that are colonized by the powdery mildew fungi Blumeria graminis f. sp. tritici and Erysiphe cichoracearum, respectively, in a compatible interaction to undergo hypersensitive cell death. No hypersensitive cell death is observed if the compound is applied onto uninfected plants. Transcriptome analyses in wheat and Arabidopsis with regard to powdery mildew inoculation and/or syringolin A spraying lead to a hypothesis about how syringolin A may accomplish to induce the hypersensitive reaction (HR) in colonized cells. The model is supported by transcriptome analysis of an Arabidopsis mutant in which HR is not induced upon syringolin A spraying of powdery mildew-infected plants. Cloning of the syringolin A synthetase genes has allowed us to build a detailed model of syringolin A synthesis based on the gene structure. This model in turn enabled us to clone the genes responsible for the synthesis of glidobactins (syn. cepafungins), antibiotics with a structure related to syringolin A that were reported to have antitumor activity, from an unknown species belonging to the order Burkholderiales. Comparisons to the approximately 700 complete eubacterial genomic sequences known resulted in the identification of a small but very intriguing group of pathogenic bacteria postulated to produce glidobactin-like molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrein, H., Makart, S., Granado, J., Shakya, R., Schneider-Pokorny, J., and Dudler, R. (2004). Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol. Plant Microbe Interact. 17, 90–97.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T. et al. (2000). Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Bruggmann, R., Abderhalden, O., Reymond, P., and Dudler, R. (2005). Analysis of epidermis- and mesophyll-specific transcript accumulation in powdery mildew-inoculated wheat leaves. Plant Mol. Biol. 58, 247–267.

    Article  PubMed  CAS  Google Scholar 

  • Dudler, R. and Eberl, L. (2006). Interaction between bacteria and eukaryotes via small molecules. Curr. Opin. Biotechnol. 17, 268–273.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D. C. (1985). Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production. J. Appl. Bacteriol. 58, 167–174.

    PubMed  CAS  Google Scholar 

  • Harada, K., Fujii, K., Shimada, T., Suzuki, M., Sano, H., Adachi, K., and Carmichael, W. W. (1995). Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC-525–17. Tetrahedron Lett. 36, 1511–1514.

    Article  CAS  Google Scholar 

  • Hassa, P., Granado, J., Freydl, E., Waspi, U., and Dudler, R. (2000). Syringolin-mediated activation of the Pir7b esterase gene in rice cells is suppressed by phosphatase inhibitors. Mol. Plant Microbe Interact. 13, 342–346.

    Article  PubMed  CAS  Google Scholar 

  • Hrabak, E. M., and Willis, D. K. (1992). The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol. 174, 3011–3020.

    PubMed  CAS  Google Scholar 

  • Kobayashi, J., Sato, M., Murayama, T., Ishibashi, M., Walchi, M. R., Kanai, M., Shoji, J., and Ohizumi, Y. (1991). Konbamide, a novel peptide with calmodulin antagonistic activity from the okinawan marine sponge Theonella sp. J. Chem. Soc., Chem. Commun. 15, 1050–1052.

    Article  Google Scholar 

  • Lu, S. E., Wang, N., Wang, J. L., Chen, Z. J., and Gross, D. C. (2005). Oligonucleotide microarray analysis of the salA regulon controlling phytotoxin production by Pseudomonas syringae pv. syringae. Mol. Plant Microbe Interact. 18, 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Michel, K., Abderhalden, O., Bruggmann, R., and Dudler, R. (2006). Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites. Plant Mol. Biol. 62, 561–578.

    Article  PubMed  CAS  Google Scholar 

  • Oka, M., Nishiyama, Y., Ohta, S., Kamei, H., Konishi, M., Miyaki, T., Oki, T., and Kawaguchi, H. (1988a). Glidobactins A, B and C, new antitumor antibiotics. I. Production, isolation, chemical properties and biological activity. J. Antibiot. 41, 1331–1337.

    PubMed  CAS  Google Scholar 

  • Oka, M., Yaginuma, K., Numata, K., Konishi, M., Oki, T., and Kawaguchi, H. (1988b). Glidobactins A, B and C, new antitumor antibiotics. II. Structure elucidation. J. Antibiot. 41, 1338–1350.

    PubMed  CAS  Google Scholar 

  • Oka, M., Numata, K., Nishiyama, Y., Kamei, H., Konishi, M., Oki, T., and Kawaguchi, H. (1988c). Chemical modification of the antitumor antibiotic glidobactin. J. Antibiot. 41, 1812–1822.

    PubMed  CAS  Google Scholar 

  • Piel, J. (2004). Metabolites from symbiotic bacteria. Nat. Prod. Rep. 21, 519–538.

    Article  PubMed  CAS  Google Scholar 

  • Reimmann, C., Hofmann, C., Mauch, F., and Dudler, R. (1995). Characterization of a rice gene induced by Pseudomonas syringae pv. syringae: Requirement for the bacterial lemA gene function. Physiol. Mol. Plant Pathol. 46, 71–81.

    Article  CAS  Google Scholar 

  • Schellenberg, B., Bigler, L., and Dudler, R. (2007). Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 9(7), 1640–1650.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, E. W., Harper, M. K., and Faulkner, D. J. (1997). Mozamides A and B, cyclic peptides from a theonellid sponge from mozambique. J. Nat. Prod. 60, 779–782.

    Article  CAS  Google Scholar 

  • Shoji, J., Hinoo, H., Kato, T., Hattori, T., Hirooka, K., Tawara, K., Shiratori, O., and Terui, Y. (1990). Isolation of cepafungins I, II and III from Pseudomonas species. J. Antibiot. 43, 783–787.

    PubMed  CAS  Google Scholar 

  • Wäspi, U., Blanc, D., Winkler, T., Ruedi, P., and Dudler, R. (1998). Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol. Plant Microbe Interact. 11, 727–733.

    Article  Google Scholar 

  • Wäspi, U., Hassa, P., Staempfli, A., Molleyres, L.-P., Winkler, T., and Dudler, R. (1999). Identification and structure of a family of syringolin variants: unusual cyclic peptides from Pseudomonas syringae pv. syringae that elicit defense responses in rice. Microbiol. Res. 154, 1–5.

    Google Scholar 

  • Wäspi, U., Schweizer, P., and Dudler, R. (2001). Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew. Plant Cell 13, 153–161.

    Article  PubMed  Google Scholar 

  • Williams, D. E., Craig, M., Holmes, C. F. B., and Andersen, R. J. (1996). Ferintoic acids A and B, new cyclic hexapeptides from the freshwater cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 59, 570–575.

    Article  CAS  Google Scholar 

  • Willis, D. K., Hrabak, E. M., Rich, J. J., Barta, T. M., Lindow, S. E., and Panopoulos, N. J. (1990). Isolation and characterization of a Pseudomonas syringae pathovar syringae mutant deficient in lesion formation on bean. Mol. Plant Microbe Interact. 3, 149–156.

    CAS  Google Scholar 

  • Xu, G. W. and Gross, D. C. (1988). Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae. J. Bacteriol. 170, 5680–5688.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Schellenberg, B., Ramel, C., Dudler, R. (2008). Syringolin A: Action on Plants, Regulation of Biosynthesis and Phylogenetic Occurrence of Structurally Related Compounds. In: Fatmi, M., et al. Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6901-7_26

Download citation

Publish with us

Policies and ethics