Skip to main content

Metabolism of Methionine in Plants and Phototrophic Bacteria

  • Chapter
Sulfur Metabolism in Phototrophic Organisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

The sulfur-containing amino acid methionine is a nutritionally important essential amino acid and the precursor of several metabolites that regulate plant growth and responses to the environment. New genetic and molecular data suggest that methionine synthesis and catabolism are coordinately regulated by novel post-transcriptional and post-translational mechanisms. This review focuses on new features reported for the molecular and biochemical aspects of methionine biosynthesis in higher plants with special emphasis on a comparison of the methionine biosynthetic pathway of plants with pathways of phototrophic bacteria (cyanobacteria). Particularly, the impact of the compartmentalization of methionine biosynthesis will be addressed with respect to regulatory aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amir R, Hacham Y and Galili G (2002) Cystathionine gamma-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci 7: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Auger S, Danchin A and Martin-Verstraete I (2002) Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine. J Bacteriol 184: 5179–5186

    Article  PubMed  CAS  Google Scholar 

  • Baum HJ, Madison JT and Thompson JF (1983) Feedback inhibition of homoserine kinase from radish leaves. Phytochemistry 22: 2409–2412

    Article  CAS  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL, Gage DA and Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11: 1485–1498

    Article  PubMed  CAS  Google Scholar 

  • Bourhy P, Martel A, Margarita D, Saint-Girons I and Belfaiza J (1997) Homoserine O-acetyltransferase, involved in the Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited. J Bacteriol 179: 4396–4398

    PubMed  CAS  Google Scholar 

  • Bouvier F, Linka N, Isner J-C, Mutterer, Weber APM and Camera B (2006) Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell 18: 3088–3105

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Breitinger U, Clausen T, Ehlert S, Huber R, Laber B, Schmidt F, Pohl E and Messerschmidt A (2001) The three-dimensional structure of cystathionine beta-lyase from Arabidopsis and its substrate specificity. Plant Physiol 126: 631–642

    Article  PubMed  CAS  Google Scholar 

  • Brush A and Paulus H (1971) The enzymic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem Biophys Res Commun 45: 735–741

    Article  PubMed  CAS  Google Scholar 

  • Bürstenbinder K, Rzewuski G, Wirtz M, Hell R and Sauter M (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49: 238–249

    Article  PubMed  CAS  Google Scholar 

  • Capone DG (2000) The marine microbial nitrogen cycle. In: Kirchman DL (ed) Microbial ecology of the oceans, pp 455–493. Wiley-Liss, Inc, New York

    Google Scholar 

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K and McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10: 471–480

    PubMed  CAS  Google Scholar 

  • Chiba Y, Ishikawa E, Kijima F, Tyson RH, Kim J, Yamamoto H, Nambara E, Leustek T, Wallsgrove RM and Naito S (1999) Evidence of autoregulation of cystathionine γ-synthase mRNA stability in Arabidopsis. Science 286: 1371–1374

    Article  PubMed  CAS  Google Scholar 

  • Chiba Y, Sakurai R, Yoshino M, Ominato K, Ishikawa M, Onouchi H and Naito S (2003) S-adenosyl-L-methionine is an effector in the posttranscriptional autoregulation of the cystathionine γ-synthase gene in Arabidopsis. Proc Natl Acad Sci USA 100: 10225–10230

    Article  PubMed  CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB and Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343

    Article  Google Scholar 

  • Clandinin MT and Cossins EA (1974) Methionine biosynthesis in isolated Pisum sativum mitochondria. Phytochemistry 13: 585–591

    Article  CAS  Google Scholar 

  • Clausen T, Wahl MC, Messerschmidt A, Huber R, Fuhrmann JC, Laber B, Streber W and Steegborn C (1999) Cloning, purification and characterization of cystathionine gamma-synthase from Nicotiana tabacum. Biol Chem 380: 1237–1242

    Article  PubMed  CAS  Google Scholar 

  • Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND and Breaker RR (2005) Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 6: R70

    Article  PubMed  CAS  Google Scholar 

  • Cornell KA, Winter RW, Tower PA and Riscoe MK (1996) Affinity purification of 5-methylthioribose kinase and 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Klebsiella pneumoniae. Biochem J 317: 285–290

    PubMed  CAS  Google Scholar 

  • Cowan JM, Urbanowski ML, Talmi M and Stauffer GV (1993) Regulation of the Salmonella typhimurium metF gene by the MetR protein. J Bacteriol 175: 5862–5866

    PubMed  CAS  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ and Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90–93

    Article  PubMed  CAS  Google Scholar 

  • Curien G, Dumas R, Ravanel S and Douce R (1996) Characterization of an Arabidopsis thaliana cDNA encoding an S-adenosylmethionine-sensitive threonine synthase. FEBS Lett 390: 85–90

    Article  PubMed  CAS  Google Scholar 

  • Curien G, Job D, Douce R and Dumas R (1998) Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemistry 31: 13212–13221

    Article  Google Scholar 

  • DeLong EF and Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437: 336–342

    Article  PubMed  CAS  Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosyn Res 79: 331–348

    Article  PubMed  CAS  Google Scholar 

  • Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI and Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100: 10020–10025

    Article  PubMed  CAS  Google Scholar 

  • Eckermann C, Eichel J and Schröder J (2000) Plant methionine synthase: new insights into properties and expression. Biol Chem 381: 695–703

    Article  PubMed  CAS  Google Scholar 

  • Eichel J, González JC, Hotze M, Matthews RG and Schröder J (1995) Vitamin-B12-independent methionine synthase from higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties. Eur J Biochem 230: 1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Epshtein V, Mironov AS and Nudler E (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 100: 5052–5056

    Article  PubMed  CAS  Google Scholar 

  • Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG and Ludwig ML (2004) Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc Natl Acad Sci USA 101: 3729–3736

    Article  PubMed  CAS  Google Scholar 

  • Foglino M, Borne F, Bally M, Ball G and Patte JC (1995) A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141: 431–439

    Article  PubMed  CAS  Google Scholar 

  • Fontecave M, Atta M and Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Fuchs RT, Grundy FJ and Henkin TM (2006) The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat Struc Mol Biol 13: 226–233

    Article  CAS  Google Scholar 

  • Galili G (1995) Regulation of lysine and threonine synthesis. Plant Cell 7: 899–906

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Amir R, Hoefgen R and Hesse H (2005) Improving the levels of essential amino acids and sulfur metabolites in plants. Biol Chem 386: 817–831

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli J, Mudd SH and Datko AH (1978) Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate. J Biol Chem 253: 5665–5677

    PubMed  CAS  Google Scholar 

  • Giovanelli J, Mudd SH and Datko AH (1985) Quantitative analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol 78: 555–560

    Article  Google Scholar 

  • Goericke R and Welschmeyer NA (1993) The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea Deep Sea Res (Part I, Oceanographic Research Papers) 40 Suppl 11–12: 2283–2294

    Google Scholar 

  • Gophna U, Bapteste E, Doolittle WF, Biran D and Ron EZ (2005) Evolutionary plasticity of methionine biosynthesis. Gene 355: 48–57

    Article  PubMed  CAS  Google Scholar 

  • Goulding CW and Matthews RG (1997) Cobalamin-dependent methionine synthase from Escherichia coli: involvement of zinc in homocysteine activation. Biochemistry 36: 15749–15757

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JM, Thompson JF and Madison JT (1988) Homoserine kinase and threonine synthase in methionine-overproducing soybean tissue cultures. Plant Cell Rep 7: 477–480

    Article  CAS  Google Scholar 

  • Grundy FJ and Henkin TM (1998) The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol Microbiol 30: 737–749

    Article  PubMed  CAS  Google Scholar 

  • Grundy FJ and Henkin TM (2004) Regulation of gene expression by effectors that bind to RNA. Curr Opin Microbiol 7: 126–131

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Gophna U and Amir R (2003). In vivo analysis of various substrates utilized by cystathionine gamma-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol Biol Evol 20: 1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Schuster G and Amir R (2006) An in vivo internal deletion in the N-terminus region of Arabidopsis cystathionine γ-synthase results in CGS expression that is insensitive to methionine. Plant J 45: 955–967

    Article  PubMed  CAS  Google Scholar 

  • Hanzelka BL and Greenberg EP (1996) Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J Bacteriol 178: 5291–5294

    PubMed  CAS  Google Scholar 

  • Hesse H and Hoefgen R (2003) Molecular aspects of methionine biosynthesis in Arabidopsis and potato. Trends Plant Sci 8: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Kreft O, Maimann S, Zeh M and Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55: 1799–1808

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Kreft O, Maimann S, Zeh M, Willmitzer L and Hoefgen R (2001) Approaches towards understanding methionine biosynthesis in higher plants. Amino Acids 20: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Hwang BJ, Yeom HJ, Kim Y and Lee HS (2002) Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184: 1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Isegawa Y, Watanabe F, Kitaoka S and Nakano Y (1994) Subcellular distribution of cobalamin-dependent methionine synthase in Euglena gracilis. Z. Phytochem 35: 59–61

    Article  CAS  Google Scholar 

  • Johnson PW and Sieburth JMcN (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24: 928–935

    Article  Google Scholar 

  • Kacprzak MM, Lewandowska I, Matthews RG and Paszewski A (2003) Transcriptional regulation of methionine synthase by homocysteine and choline in Aspergillus nidulans. Biochem J 376: 517–524

    Article  PubMed  CAS  Google Scholar 

  • Karl DM (2002) Nutrient dynamics in the deep blue sea. Trends Microbiol 10: 410–418

    Article  PubMed  CAS  Google Scholar 

  • Katz Y, Galili G and Amir R (2006) Regulatory role of cystathionine-γ-synthase and de novo synthesis of methionine in ethylene production during tomato fruit ripening Plant Mol Biol 61: 255–268

    Article  PubMed  CAS  Google Scholar 

  • Kerr DS (1971) O-acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis. J Biol Chem 246: 95–102

    PubMed  CAS  Google Scholar 

  • Kerr DS and Flavin M (1970) The regulation of methionine synthesis and the nature of cystathionine gamma-synthase in Neurospora. J Biol Chem 245: 1842–1855

    PubMed  CAS  Google Scholar 

  • Kiene RP (1996) Production of methane thiol from dimethylsulfonioproprionate in marine surface waters. Marine Chem 54: 69–83

    Article  CAS  Google Scholar 

  • Kloor D and Osswald H (2004) S-adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol Sci J 25: 294–297

    Article  CAS  Google Scholar 

  • Kloor D, Fuchs S, Petroktistis F, Delabar U, Mühlbauer B, Quast U and Osswald H (1998) Effects of ions on adenosine binding and enzyme activity of purified S-adenosylhomocysteine hydrolase from bovine kidney. Biochem Pharmacol 56: 1493–1496

    Article  PubMed  CAS  Google Scholar 

  • Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li CJ, Meeley RB, Tarczynski MC, Wagner C and Hanson AD (2003). Insertional inactivation of the methionine S-methyltransferase gene eliminates the S-methylmethionine cycle and increases the methylation ratio. Plant Physiol 131: 1808–1815

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM (1996). Biosynthesis of cysteine. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M and Umberger E (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, pp 514–527. ASM Press, Washington DC

    Google Scholar 

  • Kreft BD, Townsend A, Pohlenz HD and Laber B (1994) Purification and properties of cystathionine γ-synthase from wheat (Triticum aestivum L.). Plant Physiol 104: 1215–1220

    PubMed  CAS  Google Scholar 

  • Kreft O, Höfgen R and Hesse H (2003) Functional analysis of cystathionine γ-synthase in genetically engineered potato plants. Plant Physiol 131: 1843–1854

    Article  PubMed  CAS  Google Scholar 

  • Krungkrai J, Webster HK and Yuthavong Y (1989) Characterization of cobalamin-dependent methionine synthase purified from the human malarial parasite, Plasmodium falciparum. Parasitol Res 75: 512–517

    Article  PubMed  CAS  Google Scholar 

  • Laber B, Maurer W, Hanke C, Grafe S, Ehlert S, Messerschmidt A and Clausen T (1999) Characterization of recombinant Arabidopsis thaliana threonine synthase. Eur J Biochem 263: 212–221

    Article  PubMed  CAS  Google Scholar 

  • Lambein I, Chiba Y, Onouchi H and Naito S (2003) Decay kinetics of autogenously regulated CGS1 mRNA that codes for cystathionine gamma-synthase in Arabidopsis thaliana. Plant Cell Physiol 44: 893–900

    Article  PubMed  CAS  Google Scholar 

  • Lee M and Leustek T (1999) Identification of the gene encoding homoserine kinase from Arabidopsis thaliana and characterization of the recombinant enzyme derived from the gene. Arch Biochem Biophys 372: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Martin MN, Hudson AO, Muhitch MJ and Leustek T (2005) Methionine and threonine synthesis are limited by homoserine availability and not the activity of HSK in A. thaliana. Plant J 41: 685–696

    Article  PubMed  CAS  Google Scholar 

  • Liu HB, Nolla HA and Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the Equatorial and Subtropical North Pacific Ocean. Aqua Microb Ecol 12: 39–47

    Article  Google Scholar 

  • Lorenz E and Stauffer GV (1996) MetR-mediated repression of the glyA gene in Escherichia coli. FEMS Microbiol Lett 144: 229–233

    Article  PubMed  CAS  Google Scholar 

  • MacNicol PK, Datko AH, Giovanelli J and Mudd SH (1981) Homocysteine biosynthesis in green plants: physiological importance of the transsulfuration pathway in Lemna paucicostata. Plant Physiol 68: 619–625

    Article  PubMed  CAS  Google Scholar 

  • Madison JT and Thompson JF (1976) Threonine synthetase from higher plants: stimulation by S-adenosylmethionine and inhibition by cysteine. Biochem Biophys Res Commun 71: 684–691

    Article  PubMed  CAS  Google Scholar 

  • Malin G and Kirst GO (1997) Algal production of dimethyl sulfide and its atmospheric role. J Phycol 33: 889–896

    Article  CAS  Google Scholar 

  • Mares R, Urbanowski ML and Stauffer GV (1992) Regulation of the Salmonella typhimurium metA gene by the metR protein and homocysteine. J Bacteriol 1174: 390–397

    Google Scholar 

  • Maxon ME, Redfield B, Cai XY, Shoeman R, Fujita K, Fisher W, Stauffer G, Weissbach H and Brot N (1989) Regulation of methionine synthesis in Escherichia coli: effect of the MetR protein on the expression of the metE and metR genes. Proc Natl Acad Sci USA 86: 85–89

    Article  PubMed  CAS  Google Scholar 

  • McDaniel BAM, Grundy FJ, Artsimovitch I and Henkin TM (2003) Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 100: 3083–3088

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki JH and Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69: 366–370

    Article  CAS  Google Scholar 

  • Montange RK and Batey RT (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441: 1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Muhitch MJ and Wilson KG (1983) Chloroplasts are the subcellular location of both soluble and membrane-associated homoserine kinase in pea (Pisum sativum L.) leaves. Z Pflanzenphysiol 110: 39–46

    CAS  Google Scholar 

  • Nikiforova V, Kempa S, Zeh M, Maimann S, Kreft O, Casazza AP, Riedel K, Tauberger E, Hoefgen R and Hesse H (2002) Engineering of cysteine and methionine biosynthesis in potato. Amino Acids 22: 259–278

    Article  PubMed  CAS  Google Scholar 

  • Nudler E and Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29: 11–17

    Article  PubMed  CAS  Google Scholar 

  • Ominato K, Akita H, Suzuki A, Kijima F, Yoshino T, Yoshino M, Chiba Y, Onouchi H and Naito S (2002) Identification of a short highly conserved amino-acid sequence as the functional region required for posttranscriptional autoregulation of the cystathionine γ-synthase gene in Arabidopsis. J Biol Chem 277: 36380–36386

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Lambein I, Sakurai R, Suzuki A, Chiba Y and Naito S (2004) Autoregulation of the gene for cystathionine γ-synthase in Arabidopsis: post-transcriptional regulation induced by S-adenosylmethionine. Biochem Soc Trans 32: 597–600

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Nagami Y, Haraguchi Y, Nakamoto M, Nishimura Y, Sakurai R, Nagao N, Kawasaki D, Kadokura Y and Naito S (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev 19: 1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Palenik B, Brahamsha F, Larimer M, Land L, Hauser P, Chain J, Lamerdin W, Regala E, Allen E, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA and Waterbury JB (2003) The genome of a motile marine Synechococcus. Nature 424: 1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Park SD, Lee JY, Kim Y, Kim JH and Lee HS (1998) Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol Cells 8: 286–294

    PubMed  CAS  Google Scholar 

  • Ranocha P, McNeil SD, Ziemak MJ, Li C, Tarczynski MC and Hanson AD (2001) The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J 25: 575–584

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rébeillé F and Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279: 22548–22557

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Droux M and Douce R. 1995. Methionine biosynthesis in higher plants. I. Purification and characterisation of cystathionine γ-synthase from spinach chloroplasts. Arch Biochem Biophys 316: 572–584

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Gakiere B, Job D and Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Job D and Douce R (1996) Purification and properties of cystathionine β-lyase from Arabidopsis thaliana overexpressed in Escherichia coli. Biochem J 320: 383–392

    PubMed  CAS  Google Scholar 

  • Riesmeier J, Klonus D and Pohlenz HD (1993) Purification to homogenity and characterisation of homoserin kinase from wheat germ. Phytochemistry 32: 581–584

    Article  CAS  Google Scholar 

  • Rinder J, Casazza AP, Hoefgen R and Hesse H (2007) Regulation of aspartate-derived amino acid homeostasis in potato plants (Solanum tuberosum L.) by expression of E. coli homoserine kinase. Amino Acids, DOI 10.1007/s00726–007-0504–5

    Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER and Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA and Gelfand MS (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucl Acids Res 32: 3340–3353

    Article  PubMed  CAS  Google Scholar 

  • Rowbury RJ and Woods DD (1964) O-Succinylhomoserine as an intermediate in the synthesis of cystathionine by Escherichia coli. J Gen Microbiol 36: 341–358

    PubMed  CAS  Google Scholar 

  • Ruckert C, Pühler A and Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104: 213–228

    Article  PubMed  CAS  Google Scholar 

  • Saint-Girons I, Parsot C, Zakin MM, Barzu O and Cohen GN (1988) Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. CRC Crit Rev Biochem 23 Suppl 1: S1–S42

    Article  PubMed  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47: 597–626

    Article  PubMed  CAS  Google Scholar 

  • Sauter M, Cornell KA, Beszteri S and Rzewuski G (2004) Functional analysis of methylthioribose kinase genes in plants. Plant Physiol 136: 4061–4071

    Article  PubMed  CAS  Google Scholar 

  • Sauter M, Lorbiecke R, OuYang B, Pochapsky TC and Rzewuski G (2005) The immediate early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant J 44: 718–729

    Article  PubMed  CAS  Google Scholar 

  • Schlenk F (1983) Methylthioadenosine. Adv Enzymol Relat Areas Mol Biol 54: 195–265

    PubMed  CAS  Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA and Potts M (eds), The ecology of cyanobacteria, pp 13–35. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Schwarz R and Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151: 2503–2514

    Article  PubMed  CAS  Google Scholar 

  • Sekowska A and Danchin A (2002) The methionine salvage pathway in Bacillus subtilis. BMC Microbiology 2: 8

    Article  PubMed  Google Scholar 

  • Sekowska A, Mulard L, Krogh S, Tse JKS and Danchin A (2001) MtnK, methylthioribose kinase, is a starvation-induced protein in Bacillus subtilis. BMC Microbiology 1: 15

    Article  PubMed  CAS  Google Scholar 

  • Shah SP and Cossins EA (1970) Pteroylglutamates and methionine biosynthesis in isolated chloroplasts. FEBS Lett 7: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Li CJ and Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29: 371–380

    Article  PubMed  CAS  Google Scholar 

  • Steegborn C, Messerschmidt A, Laber B, Streber W, Huber R and Clausen T (1999) The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum reveals its substrate and reaction specificity. J Mol Biol 290: 983–996

    Article  PubMed  CAS  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43: 183–197

    Article  CAS  Google Scholar 

  • Sufrin JR, Meshnick SR, Spiess AJ, Garofalo-Hannan J, Pan X-Q and Bacchi CJ (1995) Methionine recycling pathways and antimalarial drug design. Antimicrob Agents Chemother 39: 2511–2515

    PubMed  CAS  Google Scholar 

  • Suzuki A, Shirata Y, Ishida H, Chiba Y, Onouchi H and Naito S (2001) The first exon coding region of cystathionine gamma synthase gene is necessary and sufficient for downregulation of its own mRNA accumulation in transgenic Arabidopsis thaliana. Plant Cell Physiol 42: 1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Tabe LM and Higgins TJV (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci 3: 282–286

    Article  Google Scholar 

  • Thoen A, Rognes SE and Aarnes H (1978) Biosynthesis of threonine from homoserine in pea-seedlings. 2. Threonine synthase. Plant Sci Lett 13: 113–119

    Article  CAS  Google Scholar 

  • Thompson GA, Datko AH and Mudd SH (1982a) Methionine synthesis in Lemna: inhibition of cystathionine :-synthase by propargylglycine. Plant Physiol 70: 1347–1352

    Article  PubMed  CAS  Google Scholar 

  • Thompson GA, Datko AH, Mudd SH and Giovanelli J (1982b) Methionine biosynthesis in Lemna. Studies on the regulation of cystathionine t-synthase, O-phosphohomoserine sulphhydrylase, and O-acetylserine sulphhyrylase. Plant Physiol 69: 1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Tucker BJ and Breaker RR (2005) Riboswitches as versatile control elements. Curr Opin Struct Biol 15: 342–348

    Article  PubMed  CAS  Google Scholar 

  • Urbanowski ML and Stauffer GV (1987) Regulation of the metR gene of Salmonella typhimurium. J Bacteriol 169: 5841–5844

    PubMed  CAS  Google Scholar 

  • Urbanowski ML and Stauffer GV (1989) Genetic and biochemical analysis of the MetR activator-binding site in the metE metR control region of Salmonella typhimurium. J Bacteriol 1171: 5620–5629

    Google Scholar 

  • Val DL and Cronan Jr JE (1998) In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the Lux I family of autoinducer synthases. J Bacteriol 180: 2644–2651

    PubMed  CAS  Google Scholar 

  • Vermeij P and Kertesz MA (1999) Pathways of assimilative sulphur metabolism in Pseudomonas putida. J Bacteriol 181: 5833–5837

    PubMed  CAS  Google Scholar 

  • Wallsgrove RM, Lea PJ and Miflin BJ (1983) Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol 71: 780–784

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Adams DO and Lieberman M (1982) Recycling of 5′-methylthioadenosine-ribose carbon atoms into methionine in tomato tissue in relation to ethylene production. Plant Physiol 70: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RR and Brand LE (1979) Widespread occurrence of a unicellular marine planktonic cyanobacteria. Nature 277: 293–294

    Article  Google Scholar 

  • Weissbach H and Brot N (1991) Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5: 1593–1597

    Article  PubMed  CAS  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24: 263–290

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CD, Steers Jr EJ and Weisbach H (1970) Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase. J Biol Chem 245: 390–401

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC and Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95: 6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC and Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59: 487–517

    Article  PubMed  CAS  Google Scholar 

  • Wu WF, Urbanowski ML and Stauffer GV (1992) Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene. J Bacteriol 174: 4833–4837

    PubMed  CAS  Google Scholar 

  • Yamagata S (1987) Partial purification and some properties of homoserine O-acetyltransferase of a methionine auxotroph of Saccharomyces cerevisiae. J Bacteriol 169: 3458–3463

    PubMed  CAS  Google Scholar 

  • Yang SF and Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189

    Article  CAS  Google Scholar 

  • Yang Z, Rogers LM, Song Y, Guo W and Kolattukudy PE (2005) Homoserine and asparagine are host signals that trigger in planta expression of a pathogenesis gene in Nectria haematococca. Proc Nat Acad Sci USA 102: 4197–4202

    Article  PubMed  CAS  Google Scholar 

  • Zeh M, Casazza AP, Kreft O, Rössner U, Biebrich K, Willmitzer L, Höfgen R and Hesse H (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127: 792–802

    Article  PubMed  CAS  Google Scholar 

  • Zeh M, Leggewie G, Höfgen R and Hesse H (2002) Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.). Plant Mol Biol 48: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Zehr JP and Ward BB (2002) Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl Environ Microbiol 68: 1015–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Hesse, H., Hoefgen, R. (2008). Metabolism of Methionine in Plants and Phototrophic Bacteria. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_5

Download citation

Publish with us

Policies and ethics