Skip to main content

Abstract

This chapter describes the developing potential of carbon nanotubes (CNTs) in biomedicine. Methodologies to render nanotubes biocompatible, the related studies on cell uptake, applications in vaccine delivery, interaction with nucleic acids and impact on health will be described. The use of CNTs for biomedical applications is acquiring more and more substantiating evidence for efficient development. It is clear that some important issues related to the health impact including the biodistribution, accumulation and elimination have to be addressed more thoroughly before CNTs can be proposed for clinical trials. However, CNTs show remarkable carrier properties, with a very strong tendency to cross cell membranes. Although, the toxicological studies on pristine CNTs are contradictory, showing a certain degree of risk, it is becoming evident that functionalised CNTs have reduced toxic effects. Therefore, the combination of cell uptake capacity with high loading of cargo molecules achievable with CNTs makes this new carbon nanomaterial a promising candidate for innovative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem. Rev. 99: 1787-1799.

    CAS  Google Scholar 

  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. 459-461.

    Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: Entering the mainstream. Science 303: 1818-1822.

    CAS  Google Scholar 

  • Arnold MS, Guler MO, Hersam MC, Stupp SI (2005) Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21: 4705-4709.

    CAS  Google Scholar 

  • Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ (2002) Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett. 2: 1413-1417.

    CAS  Google Scholar 

  • Bale SS, Asuri P, Karajanagi SS, Dordick JS, Kane RS (2007) Protein-directed formation of silver nanoparticles on carbon nanotubes. Adv. Mater. 19: 3167-3170.

    CAS  Google Scholar 

  • Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Stabilization of indi-vidual carbon nanotubes in aqueous solutions. Nano Lett. 2: 25-28.

    CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes - the route toward applica-tions. Science 297: 787-792.

    CAS  Google Scholar 

  • Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nano-tubes as single-molecule biosensors. Nano Lett. 3: 727-730.

    CAS  Google Scholar 

  • Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applica-tions? Adv. Mater. 15: 1765-1768.

    CAS  Google Scholar 

  • Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand JP, Muller S, Prato M, Partidos CD (2005a) Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 127: 58-59.

    CAS  Google Scholar 

  • Bianco A, Kostarelos K, Partidos CD, Prato M (2005b) Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 571-577.

    Google Scholar 

  • Boczkowski J, Lanone S (2007) Potential uses of carbon nanotubes in the medical field: How worried should patients be? Nanomedicine 2: 407-410.

    Google Scholar 

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160: 121-126.

    CAS  Google Scholar 

  • Buzaneva E, Karlash A, Yakovkin K, Shtogun Y, Putselyk S, Zherebetskiy D, Gorchinskiy A, Popova G, Prilutska S, Matyshevska O, Prilutskyy Y, Lytvyn P, Scharff P, Eklund P (2002) DNA nanotechnology of carbon nanotube cells: Physico-chemical models of self-organization and properties. Mater. Sci. Eng. C 19: 41-45.

    Google Scholar 

  • Cai D, Mataraza JM, Qin ZH, Huang ZP, Huang JY, Chiles TC, Carnahan D, Kempa K, Ren ZF (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spear-ing. Nat. Methods 2: 449-454.

    CAS  Google Scholar 

  • Cai H, Cao XN, Jiang Y, He PG, Fang YZ (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375: 287-293.

    CAS  Google Scholar 

  • Chambers G, Carroll C, Farrell GF, Dalton AB, McNamara M, Panhuis MIH, Byrne HJ (2003) Characterization of the interaction of gamma cyclodextrin with single-walled carbon nano-tubes. Nano Lett. 3: 843-846.

    CAS  Google Scholar 

  • Chen J, Dyer MJ, Yu MF (2001a) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 123: 6201-6202.

    CAS  Google Scholar 

  • Chen RJ, Zhang YG, Wang DW, Dai HJ (2001b) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123: 3838-3839.

    CAS  Google Scholar 

  • Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai HJ (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic bio-sensors. Proc. Natl. Acad. Sci. USA 100: 4984-4989.

    CAS  Google Scholar 

  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence micros-copy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126: 15638-15639.

    CAS  Google Scholar 

  • Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 7: 861-867.

    CAS  Google Scholar 

  • Cui DX, Tian FR, Ozkan CS, Wang M, Gao HJ (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155: 73-85.

    CAS  Google Scholar 

  • Dalton AB, Ortiz-Acevedo A, Zorbas V, Brunner E, Sampson WM, Collins L, Razal JM, Yoshida MM, Baughman RH, Draper RK, Musselman IH, Jose-Yacaman M, Dieckmann GR (2004) Hierarchical self-assembly of peptide-coated carbon nanotubes. Adv. Funct. Mater. 14: 1147-1151.

    CAS  Google Scholar 

  • Davis JJ, Green MLH, Hill HAO, Leung YC, Sadler PJ, Sloan J, Xavier AV, Tsang SC (1998) The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta 272: 261-266.

    CAS  Google Scholar 

  • Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Munoz E, Musselman IH, Baughman RH, Draper RK (2003) Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J. Am. Chem. Soc. 125: 1770-1777.

    CAS  Google Scholar 

  • Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, Cooke PA, Gray JW, Chen FQF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nano-tubes and nano-onions on human skin fibroblast. Nano Lett. 5: 2448-2464.

    CAS  Google Scholar 

  • Dodziuk H, Ejchart A, Anczewski W, Ueda H, Krinichnaya E, Dolgonos G, Kutner W (2003) Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin. Chem. Commun. 986-987.

    Google Scholar 

  • Dovbeshko GI, Repnytska OP, Obraztsova ED, Shtogun YV (2003) DNA interaction with single-walled carbon nanotubes: A SEIRA study. Chem. Phys. Lett. 372: 432-437.

    CAS  Google Scholar 

  • Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the func-tionality of primary immune cells. Nano Lett. 6: 1522-1528.

    CAS  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2: 347-360.

    CAS  Google Scholar 

  • Dwyer C, Guthold M, Falvo M, Washburn S, Superfine R, Erie D (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13: 601-604.

    CAS  Google Scholar 

  • Fan J, Yudasaka M, Yuge R, Futaba DN, Hata K, Iijima S (2007) Efficiency of C-60 incorporation in and release from single-wall carbon nanotubes depending on their diameters. Carbon 45: 722-726.

    CAS  Google Scholar 

  • Gao HJ, Kong Y (2004) Simulation of DNA-nanotube interactions. Annu. Rev. Mater. Res. 34: 123-150.

    CAS  Google Scholar 

  • Gao HJ, Kong Y, Cui DX, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3: 471-473.

    CAS  Google Scholar 

  • Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, Yan XY (2006) Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 7: 239-242.

    CAS  Google Scholar 

  • Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 3050-3051.

    Google Scholar 

  • Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ, Coleman JN (2006) Debundling of single-walled nanotubes by dilution: Observation of large populations of indi-vidual nanotubes in amide solvent dispersions. J. Phys. Chem. B 110: 15708-15718.

    CAS  Google Scholar 

  • Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125: 9006-9007.

    CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263: 1600-1603.

    CAS  Google Scholar 

  • Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl. Med. Biol. 34: 579-583.

    CAS  Google Scholar 

  • Guo ML, Chen JH, Liu DY, Nie LH, Yao SZ (2004) Electrochemical characteristics of the immo-bilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry 62: 29-35.

    CAS  Google Scholar 

  • Guo ZJ, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater. 10: 701-703.

    CAS  Google Scholar 

  • Hazani M, Naaman R, Hennrich F, Kappes MM (2003) Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett. 3: 153-155.

    CAS  Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115: 1125-1131.

    Article  CAS  Google Scholar 

  • Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 17: 2793-2799.

    CAS  Google Scholar 

  • Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311: 508-511.

    CAS  Google Scholar 

  • Holzinger M, Abraha J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 125: 8566-8580.

    CAS  Google Scholar 

  • Huang WJ, Taylor S, Fu KF, Lin Y, Zhang DH, Hanks TW, Rao AM, Sun YP (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2: 311-314.

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363: 603-605.

    Google Scholar 

  • Ikeda A, Hayashi K, Konishi T, Kikuchi J (2004) Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibra-tion milling technique. Chem. Commun. 1334-1335.

    Google Scholar 

  • Ito T, Sun L, Crooks RM (2003) Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem. Commun. 7: 1482-1483.

    Google Scholar 

  • Jiang KY, Schadler LS, Siegel RW, Zhang XJ, Zhang HF, Terrones M (2004) Protein immobiliza-tion on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 14: 37-39.

    CAS  Google Scholar 

  • Johnson RR, Johnson ATC, Klein ML (2008) Probing the Structure of DNA-Carbon Nanotube Hybrids with Molecular Dynamics. Nano Lett. 8: 69-75.

    CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 165: 88-100.

    CAS  Google Scholar 

  • Kam NWS, Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 127: 6021-6026.

    CAS  Google Scholar 

  • Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126: 6850-6851.

    CAS  Google Scholar 

  • Kam NWS, Liu Z, Dai HJ (2005a) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127: 12492-12493.

    CAS  Google Scholar 

  • Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005b) Carbon nanotubes as multifunctional bio-logical transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102: 11600-11605.

    CAS  Google Scholar 

  • Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45: 577-581.

    CAS  Google Scholar 

  • Kateb B, Van Handel M, Zhang LY, Bronikowski MJ, Manohara H, Badie B (2007) Internalization of MWCNTs by microglia: Possible application in immunotherapy of brain tumors. NeuroImage 37: S9-S17.

    Google Scholar 

  • Kim OK, Je JT, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ (2003) Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 125: 4426-4427.

    CAS  Google Scholar 

  • Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V, Wallace WE, Kagan VE, Shvedova AA (2007) Single-walled Carbon Nanotubes: Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells. J. Toxicol. Environ. Health A 70: 2071-2079.

    CAS  Google Scholar 

  • Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immuno-genicity of DNA vaccines. J. Immunol. 158: 3635-3639.

    CAS  Google Scholar 

  • Klinman DM, Verthelyi D, Takeshita F, Ishii KJ (1999) Immune recognition of foreign DNA: A cure for bioterrorism? Immunity 11: 123-129.

    CAS  Google Scholar 

  • Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nano-tubes is independent of functional group and cell type. Nat. Nanotechnol. 2: 108-113.

    CAS  Google Scholar 

  • Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20: 709-760.

    CAS  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546-549.

    CAS  Google Scholar 

  • Lacerda L, Bianco A, Prato M, Kostarelos K (2006a) Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug. Deliv. Rev. 58: 1460-1470.

    CAS  Google Scholar 

  • Lacerda L, Pastorin G, Wu W, Prato M, Bianco A, Kostarelos K (2006b) Luminescence of func-tionalized carbon nanotubes as a tool to monitor bundle formation and dissociation in water: The effect of plasmid-DNA complexation. Adv. Funct. Mater. 16: 1839-1846.

    CAS  Google Scholar 

  • Lacerda L, Soundararajan A, Singh R, Pastorin G, Al-Jamal KT, Turton J, Frederik P, Herrero MA, Li S, Bao A, Emfietzoglou D, Mather S, Phillips WT, Prato M, Bianco A, Goins B, Kostarelos K (2008) Dynamic imaging of functionalized multi-walled carbon nanotube sys-temic circulation and urinary excretion. Adv. Mater. 20: 225-230.

    CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77: 126-134.

    CAS  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392: 5-10.

    CAS  Google Scholar 

  • Lavan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat. Rev. Drug Discov. 1: 77-84.

    CAS  Google Scholar 

  • Lavan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21: 1184-1191.

    CAS  Google Scholar 

  • Li SN, He PG, Dong JH, Guo ZX, Dai LM (2005) DNA-directed self-assembling of carbon nano-tubes. J. Am. Chem. Soc. 127: 14-15.

    CAS  Google Scholar 

  • Lin YH, Lu F, Tu Y, Ren ZF (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4: 191-195.

    CAS  Google Scholar 

  • Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobiliza-tion and efficient delivery of DNA. Angew. Chem. Int. Ed. 44: 4782-4785.

    CAS  Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007a) Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano 1: 50-56.

    Google Scholar 

  • Liu Z, Winters M, Holodniy M, Dai HJ (2007b) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46: 2023-2027.

    CAS  Google Scholar 

  • Lu G, Maragakis P, Kaxiras E (2005) Carbon nanotube interaction with DNA. Nano Lett. 5: 897-900.

    CAS  Google Scholar 

  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett. 5: 1676-1684.

    CAS  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2: 29-37.

    CAS  Google Scholar 

  • Matyshevska OP, Karlash AY, Shtogun YV, Benilov A, Kirgizov Y, Gorchinskyy KO, Buzaneva EV, Prylutskyy YI, Scharff P (2001) Self-organizing DNA/carbon nanotube molecular films. Mater. Sci. Eng. C 15: 249-252.

    Google Scholar 

  • McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiola-beled carbon nanotubes. J. Nucl. Med. 48: 1180-1189.

    CAS  Google Scholar 

  • Moghaddam MJ, Taylor S, Gao M, Huang SM, Dai LM, Mccall MJ (2004) Highly efficient bind-ing of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 4: 89-93.

    CAS  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155: 377-384.

    CAS  Google Scholar 

  • Moulton SE, Minett AI, Murphy R, Ryan KP, McCarthy D, Coleman JN, Blau WJ, Wallace GG (2005) Biomolecules as selective dispersants for carbon nanotubes. Carbon 43: 1879-1884.

    CAS  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207: 221-231.

    CAS  Google Scholar 

  • Muller J, Decordier I, Hoet P, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29: 427-433.

    CAS  Google Scholar 

  • Murthy N, Xu MC, Schuck S, Kunisawa J, Shastri N, Frechet JMJ (2003) A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels. Proc. Natl. Acad. Sci. USA 100: 4995-5000.

    CAS  Google Scholar 

  • Mutwiri GK, Nichani AK, Babiuk S, Babiuk LA (2004) Strategies for enhancing the immunos-timulatory effects of CpG oligodeoxynucleotides. J. Contr. Rel. 97: 1-17.

    CAS  Google Scholar 

  • Nakashima N, Okuzono S, Murakami H, Nakai T, Yoshikawa K (2003) DNA dissolves single-walled carbon nanotubes in water. Chem. Lett. 32: 456-457.

    CAS  Google Scholar 

  • Nepal D, Sohn JI, Aicher WK, Lee S, Geckeler KE (2005) Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction. Biomacromolecules 6: 2919-2922.

    CAS  Google Scholar 

  • Nguyen CV, Delzeit L, Cassell AM, Li J, Han J, Meyyappan M (2002) Preparation of nucleic acid functionalized carbon nanotube Arrays. Nano Lett. 2: 1079-1081.

    CAS  Google Scholar 

  • Nimmagadda A, Thurston K, Nollert MU, McFetridge PSF (2006) Chemical modification of SWNT alters in vitro cell-SWNT interactions. J. Biomed. Mater. Res. A 76A: 614-625.

    CAS  Google Scholar 

  • Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A (2003a) Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125: 6160-6164.

    CAS  Google Scholar 

  • Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A (2003b) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10: 961-966.

    CAS  Google Scholar 

  • Pantarotto D, Briand JP, Prato M, Bianco A (2004a) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16-17.

    Google Scholar 

  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004b) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43: 5242-5246.

    CAS  Google Scholar 

  • Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 1182-1184.

    Google Scholar 

  • Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43: 2113-2117.

    CAS  Google Scholar 

  • Pignatello R, Toth I, Puglisi G (2001) Structural effects of lipophilic methotrexate conjugates on model phospholipid biomembranes. Thermochim. Acta 380: 255-264.

    CAS  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and dis-covery. Acc. Chem. Res. 41: 60-68.

    CAS  Google Scholar 

  • Rajendra J, Rodger A (2005) The binding of single-stranded DNA and PNA to single-walled car-bon nanotubes probed by flow linear dichroism. Chem. Eur. J. 11: 4841-4847.

    CAS  Google Scholar 

  • Rajendra J, Baxendale M, Rap LGD, Rodger A (2004) Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes. J. Am. Chem. Soc. 126: 11182-11188.

    CAS  Google Scholar 

  • Rao R, Lee J, Lu Q, Keskar G, Freedman KO, Floyd WC, Rao AM, Ke PC (2004) Single-mole-cule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nano-tubes. Appl. Phys. Lett. 85: 4228-4230.

    CAS  Google Scholar 

  • Rojas-Chapana J, Troszczynska J, Firkowska I, Morsczeck C, Giersig M (2005) Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells. Lab Chip 5: 536-539.

    CAS  Google Scholar 

  • Savic R, Luo LB, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300: 615-618.

    CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161: 135-142.

    CAS  Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66: 1909-1926.

    CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 289: L698-L708.

    CAS  Google Scholar 

  • Simon F, Peterlik H, Pfeiffer R, Bernardi J, Kuzmany H (2007) Fullerene release from the inside of carbon nanotubes: A possible route toward drug delivery. Chem. Phys. Lett. 445: 288-292.

    CAS  Google Scholar 

  • Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127: 4388-4396.

    CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nano-tube radiotracers. Proc. Natl. Acad. Sci. USA 103: 3357-3362.

    CAS  Google Scholar 

  • Sirotnak FM, Moccio DM, Kelleher LE, Goutas LJ (1981) Relative frequency and kinetic proper-ties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo. Cancer Res. 41: 4447-4452.

    CAS  Google Scholar 

  • Special issue on Carbon Nanotubes (2002) Acc. Chem. Res. 35: 997-1113.

    Google Scholar 

  • Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew. Chem. Int. Ed. 41: 2508-2512.

    CAS  Google Scholar 

  • Szlinder-Richert J, Cybulska B, Grzybowska J, Bolard J, Borowski E (2004) Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method. Il Farmaco 59: 289-296.

    CAS  Google Scholar 

  • Taft BJ, Lazareck AD, Withey GD, Yin AJ, Xu JM, Kelley SO (2004) Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J. Am. Chem. Soc. 126: 12750-12751.

    CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem. Rev. 106: 1105-1136.

    CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chem. Eur. J. 9: 4001-4008.

    Google Scholar 

  • Tsang SC, Guo ZJ, Chen YK, Green MLH, Hill HAO, Hambley TW, Sadler PJ (1997) Immobilization of platinated and iodinated oligonucleotides on carbon nanotubes. Angew. Chem. Int. Ed. Engl. 36: 2198-2200.

    CAS  Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: Risk assessment of nano-particles. Toxicol. Sci. 89: 42-50.

    CAS  Google Scholar 

  • Valenti LE, Fiorito PA, Garcia CD, Giacomelli CE (2007) The adsorption-desorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interface Sci. 307: 349-356.

    CAS  Google Scholar 

  • Varde NK, Pack DW (2004) Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 4: 35-51.

    CAS  Google Scholar 

  • Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K (2005) Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26: 7154-7163.

    CAS  Google Scholar 

  • Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126: 3010-3011.

    CAS  Google Scholar 

  • Wang SQ, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Peptides with selective affinity for carbon nano-tubes. Nature Mater. 2: 196-200.

    Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77: 117-125.

    CAS  Google Scholar 

  • Wick P, Manser P, Limbach LK, ttlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168: 121-131.

    CAS  Google Scholar 

  • Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nanotechnology -Carbon nanotubes with DNA recognition. Nature 420: 761.

    CAS  Google Scholar 

  • Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong LW, Fischer AB, Gudibande SR, Jamieson SH, Kenten JH, Leginus J, Leland JK, Massey RJ, Wohlstadter SJ (2003) Carbon nanotube-based biosensor. Adv. Mater. 15: 1184-1187.

    CAS  Google Scholar 

  • Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44: 6358-6362.

    CAS  Google Scholar 

  • Xie SS, Chang BH, Li WZ, Pan ZW, Sun LF, Mao JM, Chen XH, Qian LX, Zhou WY (1999) Synthesis and characterization of aligned carbon nanotube arrays. Adv. Mater. 11: 1135.

    CAS  Google Scholar 

  • Xie YH, Soh AK (2005) Investigation of non-covalent association of single-walled carbon nano-tube with amylose by molecular dynamics simulation. Mater. Lett. 59: 971-975.

    CAS  Google Scholar 

  • Yim TJ, Liu JW, Lu Y, Kane RS, Dordick JS (2005) Highly active and stable DNAzyme - Carbon nanotube hybrids. J. Am. Chem. Soc. 127: 12200-12201.

    CAS  Google Scholar 

  • Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neu-tron capture therapy drug delivery. J. Am. Chem. Soc. 127: 9875-9880.

    CAS  Google Scholar 

  • Zhang MG, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76: 5045-5050.

    CAS  Google Scholar 

  • Zhang Q, Zhang L, Li JH (2007) DNA-hemoglobin-multiwalls carbon nanotube hybrid material with sandwich structure: Preparation, characterization, and application in bioelectrochemistry. J. Phys. Chem. C 111: 8655-8660.

    CAS  Google Scholar 

  • Zhang ZH, Yang XY, Zhang Y, Zeng B, Wang ZJ, Zhu TH, Roden RBS, Chen YS, Yang RC (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 12: 4933-4939.

    CAS  Google Scholar 

  • Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003a) DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2: 338-342.

    CAS  Google Scholar 

  • Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003b) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302: 1545-1548.

    CAS  Google Scholar 

  • Zorbas V, Ortiz-Acevedo A, Dalton AB, Yoshida MM, Dieckmann GR, Draper RK, Baughman RH, Jose-Yacaman M, Musselman IH (2004) Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 126: 7222-7227.

    CAS  Google Scholar 

  • Zotchev SB (2003) Polyene macrolide antibiotics and their applications in human therapy. Curr. Med. Chem. 10: 211-223.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Bianco, A. et al. (2008). Biomedical Applications of Functionalised Carbon Nanotubes. In: Cataldo, F., Da Ros, T. (eds) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Carbon Materials: Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6845-4_2

Download citation

Publish with us

Policies and ethics