Skip to main content

Mechanisms and Principles Underlying Temporary Adhesion, Surface Exploration and Settlement Site Selection by Barnacle Cyprids: A Short Review

  • Chapter
Functional Surfaces in Biology

Abstract

The diminutive stature of many barnacle species can lead to their being easily overlooked or ignored by the casual observer of rocky intertidal shores, so it is surprising to discover that a multi-billion dollar industry (Yebra et al., 2004) exists solely to prevent the settlement and growth of fouling organisms on man-made marine structures (Callow and Callow, 2002). The systematic study and taxonomy of acorn barnacles (Cirripedia; Thoracica) owes its initiation and many of its fundamental observations to Charles Darwin who, after his research classifying species aboard the Beagle, selected a Chilean barnacle (that he named Cryptophialus) to form the basis of much of his research into evolution by natural selection (Darwin, 1854). From that point on, research into barnacles never abated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldred, N., Ista, L. K., Callow, M. E., Callow, J. A. Lopez, G. P., and Clare, A. S. (2006). Mussel (Mytilus edulis) byssus deposition in response to variations in surface wettability. J. R. Soc. Interface 3: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, E., Diamantino, T. C., and de Sousa, O. (2007). Marine paints: The particular case of antifouling paints. Prog. Org. Coat. 59: 2–20.

    Article  CAS  Google Scholar 

  • Anderson, D. T. (1994). Barnacles: Structure, function, development and evolution. Chapman and Hall, London.

    Google Scholar 

  • Arzt, E., Gorb, S., and Spolenak, R. (2003). From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100: 10603–10606.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, H. (1970). A review of some factors affecting settlement and adhesion of some common barnacles. In:Adhesion in Biological Systems. Ed. R. S. Manly. Academic Press, New York and London, pp. 89–111.

    Google Scholar 

  • Barnes, H., and Powell, H. T. (1950). Some observations on the effect of fibrous glass surfaces upon the settlement of certain sedentary marine organisms. J. Mar. Biol. Assoc. UK 29: 299–302.

    Article  Google Scholar 

  • Berntsson, K. M., Jonsson, P. R., Larsson, A. I., and Holdt, S. (2004). Rejection of unsuitable substrata as a potential driver of aggregated settlement in the barnacle Balanus improvisus. Mar. Ecol. Prog. Ser. 275: 199–210.

    Article  Google Scholar 

  • Berntsson, K. M., Jonsson, P. R., Lejhall, M., and Gatenholm, P. (2000). Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus. J. Exp. Mar. Biol. Ecol. 25: 59–83.

    Article  Google Scholar 

  • Bielecki, J., Chan, B.K.K., Hoeg, J. T., and Sari, A., (2009). Antennular sensory organs in cyprids of balanomorphan cirripedes: standardizing terminology using Megabalanus rosa. Biofouling25:203-214.

    Article  PubMed  Google Scholar 

  • Blomsterberg, M., Høeg, J. T., Jeffries, W. B., and Lagersson, N. C., (2004). Antennulary sensory organs in cyprids of Octolasmis angulata and three species of Lepas (Crustacea: Thecostraca: Cirripedia: Thoracica): a scanning electron microscopy study. J. Morphol. 200: 141–153.

    Article  Google Scholar 

  • Brady, R. F. (2001). A fracture mechanical analysis of fouling release from non-toxic antifouling coatings. Prog. Organ. Coat. 43: 188–192.

    Article  CAS  Google Scholar 

  • Brady, R. F., and Singer, I. L. (2000). Mechanical factors favoring release from fouling release coatings. Biofouling 15: 73–81.

    Article  CAS  Google Scholar 

  • Budgett, H. M. (1911). The adherence of flat surfaces. Proc. R. Soc. Lond. A 86: 25–35.

    Article  Google Scholar 

  • Callow, J. A., Callow, M. E., Ista, L. K., Lopez, G., and Chadhury, M. K. (2005). The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga Ulva linza (synonym Enteromorpha linza). J. R. Soc. Interface 2: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Callow, M. E., and Callow, J. A. (2002). Marine biofouling: a sticky problem. Biologist 49: 10–14.

    PubMed  Google Scholar 

  • Callow, M. E., and Fletcher, R. L. (1994). The influence of low surface energy materials on bioadhesion – a review. Int. Biodeter. Biodeg. 34: 333–348.

    Article  CAS  Google Scholar 

  • Carman, M.L., Estes, T.G., Feinberg, A.W., Schumacher, J.F., Wilkerson, W., Wilson, L.H., Callow, M.E., Callow, J.A., and Brennan, A.B. (2006). Engineered antifouling microtopographies – correlating wettability with cell attachment. Biofouling 22: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury, M. K., Finlay, J. A., Chung, J. Y., Callow, M. E., and Callow, J. A. (2005). The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly(dimethylsiloxane) (PDMS) model networks. Biofouling 21: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Piletsky, S., and Turner, A. P. F. (2002). Molecular recognition: Design of “keys”. Combinat. Chem. High. Throughput Screen. 5: 409–427.

    CAS  Google Scholar 

  • Cheung, P. J., Ruggieri, G. D., and Nigrelli, R. F. (1977). A new method for obtaining barnacle cement in the liquid state for polymerisation studies. Mar. Biol. 43:157–163.

    Article  Google Scholar 

  • Christie, A. O., and Dalley, R. (1987). Adhesion in barnacles. In: Barnacle Biology. Crustacean Issues, 5 Ed. A. J. Southward, AA Balkema. Rotterdam, The Netherlands, pp. 419–433.

    Google Scholar 

  • Clare, A. S., and Matsumura, K. (2000). Nature and perception of barnacle settlement pheromones. Biofouling 15: 57–71.

    Article  CAS  Google Scholar 

  • Clare, A. S., and Nott, J. A. (1994). Scanning electron microscopy of the fourth antennular segment of Balanus amphitrite amphitrite. J. Mar. Biol. Assoc. UK 74: 967–970.

    Article  Google Scholar 

  • Clare, A. S., Freet, R. K., and Mclary, M. J. (1994). On the antennular secretion of the cyprid of Balanus amphitrite amphitrite, and its role as a settlement pheromone. J. Mar. Biol. Assoc. UK 74: 243–250.

    Article  Google Scholar 

  • Crisp D.J., Walker, G., Young, G.A., and Yule, A.B. (1984). Adhesion and substrate choice in mussels and barnacles. J. Coll. Int. Sci. 104: 41–50.

    Google Scholar 

  • Crisp DJ (1976) Settlement responses in marine organisms. In: Adaptation to Environment: Essays on the Physiology of Marine Animals. Ed. R. C. Newell., Butterworths, London, pp. 83–124.

    Google Scholar 

  • Crisp, D. J. (1955). The behaviour of barnacle cyprids in relation to water movement over a surface. J. Exp. Biol. 32: 569–590.

    Google Scholar 

  • Crisp, D. J. (1974). Factors influencing the settlement of marine invertebrate larva. In: Chemoreception in Marine Organisms. Ed. P. T. Grant and A. M. Mackie. Academic Press, New York, 177–265.

    Google Scholar 

  • Crisp, D. J., and Barnes, H. (1954). The orientation and distribution of barnacles at settlement with particular reference to surface contour. J. Anim. Ecol. 23: 142–162.

    Article  Google Scholar 

  • Crisp, D. J., and Meadows, P. S. (1962). The chemical basis of gregariousness in cirripedes. Proc. Roy. Soc. Lond. B. 156: 500–520.

    Article  CAS  Google Scholar 

  • Crisp, D. J., and Meadows, P. S. (1963). Adsorbed layers: the stimulus to settle in barnacles. Proc. Roy. Soc. Lond. B. 158: 364–387.

    Article  CAS  Google Scholar 

  • Dahlström, M., Jonsson, H. Jonsson, P. R., and Elwing, H. (2004). Surface wettability as a determinant in the settlement of the barnacle Balanus improvisus (Darwin). J. Exp. Mar. Biol. Ecol. 305: 223–232.

    Article  Google Scholar 

  • Darwin, C. (1854). A monograph on the subclass Cirripedia, with figures of all the species. Ray. Soc. Publ. London. 684pp.

    Google Scholar 

  • Denny, M. W., and Gaines, S. D. (1990). On the prediction of maximal intertidal wave forces. Limnol. Oceanogr. 35(1): 1–15.

    Article  Google Scholar 

  • Derjaguin, B. V., and Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. URSS. 14: 633–662.

    Google Scholar 

  • Doochin, H. D. (1951). The morphology of Balanus improvisus Darwin and Balanus amphitrite niveus Darwin during initial attachment and metamorphosis. Bull. Mar. Sci. Gulf. Caribb. 1: 15–39.

    Google Scholar 

  • Dreanno, C., Kirby, R. R., and Clare, A. S. (2006b). Smelly feet are not always a bad thing: The relationship between cyprid footprint protein and the barnacle settlement pheromone. Biol. Lett. 2: 423–425.

    Article  CAS  Google Scholar 

  • Dreanno, C., Kirby, R. R., and Clare, A. S. (2006c). Locating the barnacle settlement pheromone: spatial and ontogenetic expression of the settlement-inducing protein complex of Balanus amphitrite. Proc. R. Soc. B. 273: 2721–2728.

    Article  CAS  Google Scholar 

  • Dreanno, C., Matsumura, K., Dohmae, N., Takio, K., Hirota, H., Kirby, R. R., and Clare, A. S. (2006a). A novel alpha 2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle, Balanus amphitrite. Proc. Natl. Acad. Sci. USA 103: 14396–14401.

    Article  CAS  Google Scholar 

  • Eckman, J. E., Savidge, W. B., and Gross, T. F. (1990). Relationship between duration of cyprid attachment and drag forces associated with detachment of Balanus amphitrite cyprids. Mar. Biol. 107: 111–118.

    Article  Google Scholar 

  • Evans, S. M, Birchenough, A. C., and Brancato, M. S. (2000). The TBT ban: out of the frying pan into the fire? Mar. Poll. Bull. 40: 204–211.

    Article  CAS  Google Scholar 

  • Fraenkel, G., and Rudall, K. M. (1940). A Study of the physical and chemical properties of the insect cuticle. Proc. Roy. Soc. Lond. B 129: 1–35.

    Article  CAS  Google Scholar 

  • Fürth, R. (1923). The dielectrical constants of some fluid solutions and their significance according to the dipal theory of Debye-With some supplements of dielectrical constants of some biologically and technologically interesting material. Ann. Physik, 70: 63–63.

    Article  Google Scholar 

  • Gerhart, D. J., Rittschof, D., Hooper, I. R., Einsenman, K., Meyer, A. E., Baier, R. E., and Young, C. (1992). Rapid and inexpensive quantification of the combined polar components of surface wettability: Application to biofouling. Biofouling 5: 251–259.

    Article  CAS  Google Scholar 

  • Gorb, S., Jiao, Y., and Scherge, M. (2000). Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridisima (Orthoptera Tettigoniidae). J. Comp. Physiol. A. 186: 821–831.

    Article  PubMed  CAS  Google Scholar 

  • Grenon, J. F., and Walker, G. (1981). The tenacity of the limpet, Patella vulgata L.: An experimental approach. J. Exp. Mar. Biol. Ecol. 54: 277–308.

    Article  Google Scholar 

  • Hedestrand, G. (1928). Uber die Dielektrizitaitskonstanten wüsseriger Losungen einiger Aminosauren. Zeitschr. Physik. Chemie 135: 36–48.

    CAS  Google Scholar 

  • Hellio, C., De La Broise, D., Dufosse, L., Le Gal, Y., and Bourgougnon, N. (2001). Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar. Environ. Res. 52: 231–47.

    Article  PubMed  CAS  Google Scholar 

  • Hills, J. M., and Thomason, J. T. (1998). The effect of scales of surface roughness on the settlement of barnacle (Semibalanus balanoides) cyprids. Biofouling 12: 57–69.

    Article  Google Scholar 

  • Holm, E. R. (1990). Attachment behaviour in the barnacle Balanus amphitrite amphitrite (Darwin): Genetic and environmental effects. J. Exp. Mar. Biol. Ecol. 135(2): 85–98.

    Article  Google Scholar 

  • Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S. N., and Arzt, E. (2005). Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 102: 16293–16295.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. L., Kendall, K., and Roberts, A. D. (1971). Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A. 324: 301–313.

    Article  CAS  Google Scholar 

  • Jonsson, P. R. (2005). A classic hydrodynamic analysis of larval settlement. J. Exp. Biol. 208: 3431–3432.

    Article  PubMed  Google Scholar 

  • Kesel, A. B., Martin, A., and Seidl, T. (2003). Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J. Exp. Biol. 206: 2733–2738.

    Article  PubMed  CAS  Google Scholar 

  • Knight-Jones, E. W. (1953). Laboratory experiments on gregariousness during settlement in Balanus balanoides and other barnacles. J. Exp. Biol. 30: 584–598.

    CAS  Google Scholar 

  • Knight-Jones, E. W., and Stevenson, J. P. (1950). Gregariousness during settlement in the barnacle Elminius modestus Darwin. J. Mar. Biol. Assoc. UK 29:291–297.

    Google Scholar 

  • Kosaki, A., and Yamaoka, R. (1996). Chemical composition of footprints and cuticular lipids of three species of lady beetles. Jpn. J. Appl. Entomol. Zool. 40: 47–53.

    CAS  Google Scholar 

  • Lagersson N. C., and Høeg, J. T. (2002). Settlement behaviour and antennulary biomechanics in cypris larvae of Balanus amphitrite (Crustacea: Thecostraca: Cirripedia). Mar. Biol. 141: 513–526.

    Article  Google Scholar 

  • Langer, M. G., Ruppersberg, J. P., and Gorb, S. (2004). Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc. R. Soc. Lond. B 271: 2209–2215.

    Article  Google Scholar 

  • Larman, V. N., Gabbott, P. A., and East, J. (1982). Physico-chemical properties of the settlement factor proteins from the barnacle Balanus balanoides. Comp. Biochem. Physiol. 72(b): 329–338.

    Google Scholar 

  • Lemire, M., and Bourget, E. (1996). Substratum heterogeneity and complexity influence micro-habitat selection of Balanus sp. and Tubulariacrocea larvae. Mar Ecol. Prog. Ser. 135:77–87.

    Article  Google Scholar 

  • Lindner, E. (1984). The attachment of macrofouling invertebrates. In J. D. Costlow and R. C. Tipper (eds.). Marine Biodeterioration: An Interdisciplinary Study: 183–202. London: Spon.

    Google Scholar 

  • Lindner, E. (1992). A low surface energy approach in the control of marine biofouling. Biofouling 6: 193–205.

    Article  CAS  Google Scholar 

  • Malmberg, C. G., and Maryott, A. A. (1950). Dielectric constants of aqueous solutions of dextrose and sucrose. J. Res. Natl. Bureau. Stds. 48(4):299–303.

    Google Scholar 

  • Marechal, J-P., Hellio, C., Sebire, M., and Clare, A. S. (2004). Settlement behaviour of marine invertebrate larvae measured by Ethovision 3.0.Biofouling 20: 211–217.

    Article  PubMed  Google Scholar 

  • Marmur, A. (2006). Super-hydrophobicity fundamentals: implications to biofouling prevention. Biofouling 22: 107–115.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, K., Nagano, M., and Fusetani, N. (1998a). Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle, Balanus amphitrite. J. Exp. Zool. 281: 12–20.

    Article  Google Scholar 

  • Matsumura, K., Nagano, M., Kato-Yoshinaga, Y., Yamazaki, M., Clare, A. S., and Fusetani, N. (1998b). Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions. Proc. Roy. Soc. Lond. B. 265: 1825–1830.

    Article  CAS  Google Scholar 

  • Moyse, J., Høeg, J. T., Jensen, P. G., and Al-Yahya, H. A. H. (1995). Attachment organs in cypris larvae: Using scanning electron microscopy. In: New Frontiers in Barnacle Evolution. Crustacean issues 10. Ed. F. R. Schram and J. T. Høeg, AA. Balkema publishers, Rotterdam, Netherlands, pp. 153–177.

    Google Scholar 

  • Mullineaux, L. S., and Butman, C. A. (1991). Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow. Mar. Biol. 110: 93–103.

    Article  Google Scholar 

  • Niederegger, S., Gorb, S., and Jiao, Y. (2002). Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae) J. Comp. Physiol. A. 187:961–970.

    Article  Google Scholar 

  • Nott, J. A., and Foster, B. A. (1969). On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides. Phil. Trans. R. Soc. Lond. B 256: 115–134.

    Article  Google Scholar 

  • Ödling, K., Albertsson, C., Russell, J. T., and MÅrtensson, L. G. E. (2006). An in vivo study of exocytosis of cement proteins from barnacle Balanus improvisus (D.) cyprid larva. J. Exp. Biol. 209: 956–964.

    Article  PubMed  CAS  Google Scholar 

  • Okano, K., Shimizu, K., Satuito, C. G., and Fusetani, N. (1996). Visualisation of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. J. Exp. Biol. 199: 2131–2137.

    PubMed  Google Scholar 

  • Onsager, L. (1936). Electric moments of molecules in liquids. J. Am. Chem. Soc. 58: 1486 –1493.

    Article  CAS  Google Scholar 

  • Pettitt, M. E., Henry, S. L., Callow, M. E., Callow, J. A., and Clare, A. S. (2004). Mode of action of commercial enzymes on the settlement and adhesion processes used by cypris larvae of barnacles (Balanus amphitrite), spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling 20: 299–311.

    Article  PubMed  CAS  Google Scholar 

  • Phang, I. Y., Aldred, N. A., Clare, A. S., and Vancso, G. J. (2008). Towards a nanomechanical basis for temporary adhesion in barnacle cyprids (Semibalanus balanoides). J. R. Soc. Interface 5: 397–401. Available Online doi:10.1098/rsif.2007.1209.

    Article  PubMed  CAS  Google Scholar 

  • Phang, I. Y., Aldred, N. A., Clare, A. S., Callow, J. A., and Vancso, G. J. (2006). An in situ study of the nanomechanical properties of barnacle (Balanus amphitrite) cyprid cement using atomic force microscopy (AFM). Biofouling 22: 245–250.

    Article  PubMed  Google Scholar 

  • Prendergast, G., Zurn, C., Bers, A. V., Head, R., Hansson, L., and Thomason, J. (2009). The relative magnitude of the effects of biological and physical settlement cues for cypris larvae of the acorn barnacle, Semibalanus balanoides L. Biofouling 25: 35–44.

    Article  PubMed  Google Scholar 

  • Rittschof, D., and Costlow, J. D. (1989). Bryozoan and barnacle settlement in relation to initial surface wettability: A comparison of laboratory and field studies. In: Topics in Marine Biology. ed. J. D. Ross.Scient. Mar. 53: 411–416.

    Google Scholar 

  • Rittschof, D., Branscomb, E. S., and Costlow, J. D. (1984). Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. Exp. Mar. Biol. Ecol. 82: 131–146.

    Article  Google Scholar 

  • Satuito, C. G., Shimizu, K., Natoyama, K., Yamazaki, M., and Fusetani, N. (1996). Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein. Mar. Biol. 127: 125–130.

    Article  Google Scholar 

  • Smith, A. M. (2002). The structure and function of adhesive gels from invertebrates. Integr. Comp. Biol. 42(6): 1164–1171.

    Article  CAS  Google Scholar 

  • Spolenak, R., Gorb, S., and Arzt, E. (2005). Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 1: 5–13.

    Article  PubMed  Google Scholar 

  • Stèfan, J. (1874). Sitzungsbericht Akadem. Wiss. Wien II 68: 325.

    Google Scholar 

  • Swain, G. W., and Schultz, M. P. (1996). The testing and evaluation of non toxic antifouling coatings. Biofouling 10: 187–197.

    Article  CAS  Google Scholar 

  • Verwey, E. J., and Overbeek J. T. G. (1948). Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam.

    Google Scholar 

  • Visscher, J. P. (1928). Reaction of the cyprid larvae of barnacles at the time of attachment. Biol. Bull. 54: 327–335.

    Article  Google Scholar 

  • Walker, G., and Yule, A. B. (1984). Temporary adhesion of the barnacle cyprid: the existence of an antennular adhesive secretion. J. Mar. Biol. Assoc. UK 64: 679–686.

    Article  Google Scholar 

  • Walker, G., Yule, A. B., and Ratcliffe, J. (1985). The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J. Zool. Lond. 205: 297–307.

    Google Scholar 

  • Walley, L. J. (1968). Studies on the larval structure and metamorphosis ofBalanus balanoides (L.). Phil. Trans. Roy. Soc. Lond. 256: 237–279.

    Google Scholar 

  • Wethey, D. S. (1986). Ranking of settlement cues by barnacle larvae: Influence of surface contour. Bull. Mar. Sci. 39: 393–400.

    Google Scholar 

  • Wieczorek, S. K., and Todd, C. D. (1998). Inhibition and facilitation of settlement of epifuanal marine invertebrate larvae by microbial biofilm cues. Biofouling 12: 81–118.

    Article  Google Scholar 

  • Yebra, D. M., Søren, K., and Dam-Johansen, K. (2004). Antifouling technology – past, present and future steps towards efficient and environmentally friendly antifoulings. Prog. Organ. Coat. 50: 75–104.

    Article  CAS  Google Scholar 

  • Yebra, D. M., Søren, K., Weinell, C. E., and Dam-Johansen, K. (2006). Presence and effects of marine microbial biofilms on biocide-based antifouling paints. Biofouling 22: 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Young, T. (1805). On the cohesion of fluids. Phil. Trans. R. Soc. Lond. A84. 95: 65–87.

    Article  Google Scholar 

  • Yule, A. B., and Crisp, D. J. (1983). Adhesion of cypris larvae of the barnacle, Balanus balanoides, to clean and arthropodin-treated surfaces. J. Mar. Biol. Assoc. UK 63(2): 261–271.

    Article  Google Scholar 

  • Yule, A. B., and Walker, G. (1984). The temporary adhesion of barnacle cyprids: effects of some differing surface characteristics. J. Mar. Biol. Assoc. UK64:429–439.

    Article  Google Scholar 

  • Yule, A. B., and Walker, G. (1985). Settlement of Balanus balanoides: The effect of cyprid antennular secretion. J. Mar. Biol. Assoc. UK 65: 707–712.

    Article  Google Scholar 

  • Yule, A. B., and Walker, G. (1987). Adhesion in barnacles. In: Barnacle Biology. Crustacean Issues, 5. Ed. A.J. Southward, AA Balkema. Rotterdam, The Netherlands, pp. 389–423.

    Google Scholar 

  • Zhao, H., Robertson, N. B., Jewhurst, S. A., and Waite, J. H. (2006). probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. 281: 11090–11096.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Aldred .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aldred, N., Clare, A.S. (2009). Mechanisms and Principles Underlying Temporary Adhesion, Surface Exploration and Settlement Site Selection by Barnacle Cyprids: A Short Review. In: Gorb, S.N. (eds) Functional Surfaces in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6695-5_3

Download citation

Publish with us

Policies and ethics