Skip to main content

Use of Protein Hydrolysates in Industrial Starter Culture Fermentations

  • Chapter
  • First Online:
Protein Hydrolysates in Biotechnology

Abstract

Lactic acid bacteria (LAB) have been used as starter cultures for fermenting foods long before the importance of microorganisms were recognized. The most important group of LAB are the lactococci, lactobacilli, streptococci, and pediococci. Additionally, bifidobacteria have been included as a probiotic, providing added value to the product. Since the genera involved are so diverse, the nutritional requirements (energy, carbon and nitrogen sources) differ significantly between and within species. Designing an optimum fermentation medium for production of active and vigorous LAB starter cultures and probiotics requires selecting the right raw ingredients, especially protein hydrolysates that can provide adequate nutrients for growth and viability. This chapter attempts to describe the application of various commercial protein hydrolysates used for production of dairy and meat starter cultures, with special emphasis on meeting the nitrogen requirements of industrially important LAB species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ala:

Alanine

Arg:

Arginine

Asn:

Asparagine

Asp:

Aspartic acid (Aspartate)

CDM:

Chemically defined medium

Cys:

Cysteine

Gln:

Glutamine

Glu:

Glutamic acid (Glutamate)

Gly:

Glycine

His:

Histidine

Ile:

Isoleucine

Leu:

Leucine

Lys:

Lysine

Met:

Methionine

Phe:

Phenylalanine

Pro:

Proline

Ser:

Serine

Thr:

Threonine

Trp:

Tryptophan

Tyr:

Tyrosine

Val:

Valine

References

  • Azaola A, Bustamante P, Huerta S, Saucedo G, Gonzalez R, Ramos C et al (1999) Use of surface response methodology to describe biomass production of Bifidobacterium infantis in complex media. Biotech Tech 13(2):93–95

    Article  CAS  Google Scholar 

  • Bringel F, Hubert JC (2003) Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in Lactobacillus plantarum, L. paraplantarum, L. pentosus, and L. casei: prevalence of CO(2)-dependent auxotrophs and characterization of deficient arg genes in L. plantarum. Appl Environ Microbiol 69(5):2674–2683

    Article  CAS  Google Scholar 

  • Champagne CP (1998) Production de ferments lactiques dans l’industrie latiere. Centre de Recherche et de development sur le aliments Agriculture et Agroalimentaire Canada, Quebec, Canada

    Google Scholar 

  • Chervaux C, Ehrlich SD, Maguin E (2000) Physiological study of Lactobacillus delbrueckii subsp. bulgaricus Strains in a novel chemically defined medium. Appl Environ Microbiol 66(12):5306–5311

    Article  CAS  Google Scholar 

  • Collins EB, Hall BJ (1984) Growth of bifidobacteria in milk and preparation of Bifidobacterium infantis for a dietary adjunct. J Dairy Sci 67(7):1376–1380

    Article  Google Scholar 

  • Dave RI, Shah NP (1998) Ingredient supplementation effects on viability of probiotic bacteria in yogurt. J Dairy Sci 81(11):2804–2816

    Article  CAS  Google Scholar 

  • Desjardins M-L, Roy D, Goulet J (1990) Uncoupling of Growth and acids production in Bifidobacterium ssp. J Dairy Sci 73(11):1478–1484

    Article  CAS  Google Scholar 

  • Elli M, Zink R, Rytz A, Reniero R, Morelli L (2000) Iron requirement of Lactobacillus spp. in completely chemically defined growth media. J Appl Microbiol 88(4):695–703

    Article  CAS  Google Scholar 

  • Exterkate FA, Veerkamp JH (1969) Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. I. Composition of lipids. Biochim Biophys Acta 176(1):65–77

    Article  CAS  Google Scholar 

  • Foucaud C, Hemme D, Desmazeaud M (2001) Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides. Lett Appl Microbiol 32(1):20–25

    Article  CAS  Google Scholar 

  • Garault P, Letort C, Juillard V, Monnet V (2000) Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Appl Environ Microbiol 66(12):5128–5133

    Article  CAS  Google Scholar 

  • Gomes AMP, Malcata FX (1998) Use of small ruminants’ milk supplemented with available nitrogen as growth media for Bifidobacterium lactis and Lactobacillus acidophilus. J Appl Microbiol 85(5):839–848

    Article  CAS  Google Scholar 

  • Gonzalez CF (1984) Preservation of foods with non-lactose fermenting Streptococcus lactis subspecies diacetilactis. US Patent 4,477,471

    Google Scholar 

  • Hassan AN, Frank JF, Shalabi SI (2001) Factors affecting capsule size and production by lactic acid bacteria used as dairy starter cultures. Int J Food Microbiol 64(1–2):199–203

    Article  CAS  Google Scholar 

  • Hebert E, Raya RR, De Giori GS (2000) Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. Appl Environ Microbiol 66(12):5316–5321

    Article  CAS  Google Scholar 

  • Hellinick S, Richard J, Juillard V (1997) The effects of adding lactococcal proteinase on the growth rate of Lactococcus lactis in milk depend on the type of enzyme. Appl Environ Microbiol 63(6):2124–2130

    Google Scholar 

  • Hoier E, Janzen T, Henriksen CM, Rattray F, Brockmann E, Johansen E (1999) The production, application and action of lactic cheese starter cultures. In: Law BA (ed) Technology of cheesemaking. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hsieh CM, Yang FC, Iannotti EL (1999) The effect of soy protein hydrolyzates on fermentation by Lactobacillus amylovorus. Process Biochem 34(2):173–179

    Article  CAS  Google Scholar 

  • Hugenholtz J, Dijkstra M, Veldkamp H (1987) Amino acid limited growth of starter cultures in milk. FEMS Microbiol Lett 45:191–198

    Article  CAS  Google Scholar 

  • Ibrahim S, Bezkorovainy A (1994) Growth-promoting factors for Bifidobacterium longum. J Food Sci 59(1):189–191

    Article  CAS  Google Scholar 

  • Juillard V, Le Bars D, Kunji ER, Konings WN, Gripon JC, Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol 61(8):3024–3030

    CAS  Google Scholar 

  • Juillard V, Foucaud M, Desmazeaud M, Richard J (1996) Utilisation des sources d’azote du lait par Lactococcus lactis. Lait 76(1–2):13–24

    Article  CAS  Google Scholar 

  • Juillard V, Guillot A, Le Bars D, Gripon JC (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl Environ Microbiol 64(4):1230–1236

    CAS  Google Scholar 

  • Kegel MA, Wallace DL (1989) Use of stabilizing agents in culture media for growing acid producing bacteria. US patent 4,806,479

    Google Scholar 

  • Kenny O, Fitzgerald RJ, Cuinn GO, Beresford TP, Jordan K (2003) Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus. Int Dairy J 13(7):509–516

    Article  CAS  Google Scholar 

  • Klaver FA, Kingma F, Veerkamp AH (1993) Growth and survival of bifidobacteria in milk. Netherlands Milk Dairy J 47(3–4):151–164

    Google Scholar 

  • Konings WN, Poolman B, Driessen AJ (1989) Bioenergetics and solute transport in Lactococci. Crit Rev Microbiol 16(6):419–476

    Article  CAS  Google Scholar 

  • Kunji ERS, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B, Konings NW (1995) Transport of B-Casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J Biol Chem 270(4):1569–1574

    Article  CAS  Google Scholar 

  • Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Leeuwenhoek 70(2–4):187–221

    Article  CAS  Google Scholar 

  • Kurmann JA (1988) Starters with selected intestinal bacteria. Fermented milk: science and technology. IDF Bulletin No. 227, Brussels

    Google Scholar 

  • Kurmann JA, Rasic JL (1991) The health potential of products containing bifidobacteria. In: Robinson RK (ed) Therapeutic properties of fermented milks. London, Elsevier, pp 117–158

    Google Scholar 

  • Law BA, Sezgin E, Sharpe ME (1976) Amino acid nutrition of some commercial cheese starters in relation to their growth in peptone-supplemented whey media. J Dairy Res 43(2):291–300

    Article  CAS  Google Scholar 

  • Loader NM, Lindner N, Pasupuleti VK (1999) Proteolytic system of lactic acid bacteria and nutrients. In: Nagodawithana TW, Reed G (ed) Nutritional Requirements of commercially important microorganisms. Esteekay Associates, Inc. Milwaukee, WI.

    Google Scholar 

  • Lucas A, Sodini I, Monnet C, Jolivet P, Corrieau G (2004) Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. Int Dairy J 14(1):47–53

    Article  CAS  Google Scholar 

  • Mierau I, Kunji ER, Venema G, Kok J (1997) Casein and peptide degradation in lactic acid bacteria. Biotechnol Genet Eng Rev 14:279–301

    CAS  Google Scholar 

  • Misono H, Norihiko G, Nagasaki S (1985) Purification, crystallization and properties of NADP+ -Specific glutamate dehydrogenase from Lactobacillus fermentum. Agric Biol Chem 49(1):117–123

    Article  CAS  Google Scholar 

  • Molskness TA, Lee DR, Sandine WE, Elliker PR (1973) b-D-Phosphogalactohydrolase of Lactic Streptococci. Appl Micriobiol 25(3):373–380

    CAS  Google Scholar 

  • Morel F, Frot-Coutaz J, Aubel D, Portalier R, Atlan D (1999) Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiology 145(2):437–446

    Article  CAS  Google Scholar 

  • Morishita T, Fucada T, Shirota M, Yura T (1974) Genetic basis of nutritional requirements in Lactobacillus casei. J Bacteriol 120(1):1078–1084

    CAS  Google Scholar 

  • Morishita T, Deguchi Y, Yajima M, Sakurai T, Yura T (1981) Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol 148(1):64–71

    CAS  Google Scholar 

  • Norris RF, De Spin M, Zilliken FW, Harvey TS, Gyorgy P (1954) Occurrence of mucoid variants of Lactobacillus bifidus; demonstration of extracellular and intracellular polysaccharide. J Bacteriol 67(2):159–166

    CAS  Google Scholar 

  • Novak L, Cocaign-Bousquet M, Lindley ND, Loubiere P (1997) Metabolism and energetic of Lactococcus lactis during growth in complex or synthetic media. Appl Environ Microbiol 63(7):2665–2670

    CAS  Google Scholar 

  • Petersen BL, Dave RI, McMahon DJ, Oberg CJ, Broadbent JR (2000) Influence of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus on Mozzarella cheese and cheese whey. J Dairy Sci 83(9):1952–1956

    Article  CAS  Google Scholar 

  • Petschow BW, Talbott RD (1991) Response of bifidobacterium species to growth promoters in human and cow milk. Pediatr Res 29(2):208–213

    Article  CAS  Google Scholar 

  • Poolman B, Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170(2):700–707

    CAS  Google Scholar 

  • Porubcan RS, Sellars RL (1979) Lactic starter culture concentrates. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 1, Microbial processes. Academic, New York, pp 59–92

    Google Scholar 

  • Poupard J, Husain I, Norris RF (1973) Biology of the bifidobacteria. Bacteriol Rev 37(2):136–165

    CAS  Google Scholar 

  • Proulx M, Ward P, Gauthier SF, Roy D (1994) Comparison of bifidobacterial growth-promoting activity of ultrafiltered casein hydrolyzate fractions. Lait 74(2):139–152

    Article  CAS  Google Scholar 

  • Ravula RR, Shah NP (1998) Effect of acid casein hydrolysate and cysteine on the viability of yogurt and probiotic bacteria in fermented frozen dairy desserts. Austr J Dairy Technol 53(3):175–179

    CAS  Google Scholar 

  • Smid EJ, Konings WN (1990) Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. J Bacteriol 172(9):5286–5292

    CAS  Google Scholar 

  • Summer R (1996) Yeast extracts: production, properties and components. Paper presented at the 9th international symposium on yeasts, Sydney, August 1996

    Google Scholar 

  • ten Otto R, Brink B, Veldkamp H, Konings WN (1983) The relationship between growth rate and electrochemical proton gradient of Streptococcus cremoris. FEMS Microbiol Lett 16:69–74

    Article  Google Scholar 

  • Vedamuthu ER (1980) Method for diacetyl flavor and aroma development in creamed cottage cheese. US Patent 4,191,782

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhavi (Soni) Ummadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ummadi, M., Curic-Bawden, M. (2008). Use of Protein Hydrolysates in Industrial Starter Culture Fermentations. In: Pasupuleti, V., Demain, A. (eds) Protein Hydrolysates in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6674-0_6

Download citation

Publish with us

Policies and ethics