Skip to main content

Biophysical Interactions Between Timber Trees and Arabica Coffee in Suboptimal Conditions of Central America

  • Chapter
Toward Agroforestry Design

Part of the book series: Advances in Agroforestry ((ADAG,volume 4))

Especially in the less favorable areas (altitude < 800 m and mean air temperature > 25 °C) that predominate in Central America, there is a renewed interest in managing Arabica coffee (Coffea arabica L.) under shade after three decades of promoting intensively managed coffee systems planted in full sun with highly productive dwarf cultivars. The presence of shade trees, especially leguminous species, improves soil fertility (organic matter content and nutrient cycling) and enhances coffee plantation sustainability (Beer et al., 1998; Soto-Pinto et al., 2000). In suboptimal coffee producing areas with low altitude, shade trees greatly reduce excessive solar irradiance and buffer large diurnal variations in air temperature and humidity that are detrimental to coffee physiology (Gutiérrez et al., 1994; Siles and Vaast, 2002). In mountainous areas, associated trees decrease soil erosion and nutrient leaching, especially nitrogen (Babbar and Zak, 1995). Therefore, shade trees play an important role in the Central American region due to the valuable impact of coffee agroforestry (AF) systems on the environment and natural resources such as preservation of biodiversity, soil conservation, water quality, buffering effect around protected areas, reduced pressure on forests, and carbon sequestration (Somarriba et al., 2004). In this region with a long-lasting reputation for commercializing quality coffee, shade can also contribute to the production of high-quality coffee as demonstrated in Guatemala (Guyot et al., 1996), Costa Rica (Muschler, 2001), and Honduras (Decazy et al., 2003). Nonetheless, trees associated to coffee are mainly legume species (Erythrina spp. and Inga spp.) with no timber values that are pruned periodically to avoid large decreases in coffee production due to competition for light, nutrients and water during the dry period (Beer et al., 1998). Indeed, timber trees are less common in coffee AF systems of Central America despite the fact that timber could greatly help farmers to diversify their income.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babbar L.J. and Zak D.R. (1995) Nitrogen loss from coffee agroecosystems in Costa Rica: Leaching and denitrification in the presence and absence of shade trees. J. Environ. Qual. 24: 227–233.

    Article  CAS  Google Scholar 

  • Beer J., Muschler R., Kass D., and Somarriba E. (1998) Shade management in coffee and cacao plantations. Agrofor. Syst. 38: 139–164.

    Article  Google Scholar 

  • Dart S.K. and Nursten H.E. (1985) Volatile components. In: Clarke R.J. and Macrae R. (eds) Coffee: Volume I. Chemistry. Elsevier Applied Science, London, pp. 223–265.

    Google Scholar 

  • Decazy F., Avelino J., Guyot B., Perriot J.J., Pineda C., and Cilas C. (2003) Quality of different Honduran coffees in relations to several environments. J. Food Sci. 68: 2356–2361.

    Article  CAS  Google Scholar 

  • Dzib B.B. (2003) Encuestas sobre el manejo, secuestro de carbono y ingreso de árboles maderables en fincas cafetaleras de tres regiones contrastantes de Costa Rica. Tesis Mag. Sc. CATIE, Turrialba, Costa Rica, 78pp.

    Google Scholar 

  • Gutiérrez M.V., Meinzer F.C., and Grantz D.A. (1994) Regulation of transpiration in coffee hedgerows: co-variation of environmental variables and apparent responses of stomata to wind and humidity. Plant Cell Environ. 17: 1305–1313.

    Article  Google Scholar 

  • Guyot B., Davrieux F., Manez J.C., and Vincent J.C. (1993) Détermination de la caféine et de la matière sèche par spectrométrie proche infrarouge. Applications aux cafés verts et aux cafés torréfiés. Café Cacao Thé 37: 53–64.

    CAS  Google Scholar 

  • Guyot B., Manez J.C., Perriot J.J., Giron J., and Villain L. (1996) Influence de l’altitude et de l’ombrage sur la qualité des cafés arabica. Plantation Recherche Développement 3: 272–280.

    Google Scholar 

  • Mosquera L.P.S., Riaño N.M.H., Arcila J.P., and Ponce C.A.D. (1999) Fotosíntesis, respiración y fotorespiración en hojas de café Coffea sp. Cenicafé 50(3): 215–221.

    Google Scholar 

  • Muschler R. (2001) Shade improves coffee quality in a sub-optimal coffee zone of Costa Rica. Agrofor. Syst. 51: 131–139.

    Article  Google Scholar 

  • Nygren P. and Ramirez C. (1995) Production and turnover of N2 fixing nodules in relation to foliage development in periodically pruned Erythrina poeppigiana (leguminosae) trees. For Ecol Man 73: 59–70.

    Article  Google Scholar 

  • Siles P.D.G. and Vaast P. (2002) Comportamiento fisiológico del café asociado con Eucalyptus deglupta, Terminalia ivorensis y sin sombra. Agroforestería en las Américas 9(35–36): 44–49.

    Google Scholar 

  • Soto-Pinto L., Perfecto Y., Castilio-Hernandez J., and Caballero-Nieto J. (2000) Shade effect on coffee production at the northern Tzeltal zone of the State of Chiapas, Mexico. Agr. Ecosyst. Environ. 80: 61–69.

    Article  Google Scholar 

  • Somarriba E., Harvey CA., Samper M., Anthony F., Gonzalez J., Staver C., and Rice R.A. (2004) Biodiversity conservation in neotropical coffee (Coffea arabica) plantations. In : Schroth G., da Fonseca G.A.B., Harvey C.A., Gascon C., Vasconcelos H.L., and Izac A.M.N. (eds) Agroforestry and Biodiversity Conservation in Tropical Landscapes. Island Press, Washington, DC, pp. 198–226.

    Google Scholar 

  • Vaast P., Génard M., Dauzat J. (2002) Modeling the effects of fruit load, shade and plant water status on coffee berry growth and carbon partitioning at the branch level. Acta Horticulturae. 584: 57–62.

    CAS  Google Scholar 

  • Vaast P., Bertrand B., Perriot J.J., Guyot B., and Génard M. (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sci. Food Agr. 86: 197–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Vaast, P., van Kanten, R., Siles, P., Angrand, J., Aguilar, A. (2008). Biophysical Interactions Between Timber Trees and Arabica Coffee in Suboptimal Conditions of Central America. In: Jose, S., Gordon, A.M. (eds) Toward Agroforestry Design. Advances in Agroforestry, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6572-9_9

Download citation

Publish with us

Policies and ethics