Skip to main content

Low-temperature preservation of fish gonad cells and oocytes

  • Chapter
The Fish Oocyte

Ensuring the retention of a record of the genetic diversity of species involves, at its simplest form, the long-term storage of material from somatic and reproductive cell lines. However, to have real practical benefit such material should be in the form of viable cellular material, ideally from the germline or reproductive cell lines. The ability to generate banks of cryopreserved sperm, eggs, and embryos that retain full viability following recovery from the frozen state would be the most powerful facilitating tool in species conservation and commercial applications such as aquaculture. The nuclear genomes of fish show a full range of sex chromosome differentiation, ranging from the all-autosomal karyotype as seen in the zebrafish to the genetically and cytogenetically differentiated sex chromosomes seen in the guppy (Traut and Winking, 2001). The preservation of haploid genomes in the viable form of male and female reproductive cells, or of viable embryos, is vital if normal populations of males and females are to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrosini, G., Andrisani, A., Porcu, E., Rebellato, E., Revelli, A., Caserta, A., Cosmi, E., Marci, R., Moscarini, M. Oocyte cryopreservation: state of art. Reprod. Toxicol. 22:250–262 (2006).

    Article  PubMed  Google Scholar 

  • Arnaud, F.G., Pegg, D.E. Cryoprotection of human platelets with high concentrations of propylene glycol and glycerol. Cryobiology 25:523–524 (1988).

    Article  Google Scholar 

  • Barrett, I. Fertility of salmonoid eggs and sperm after storage. J. Fish. Res. Bd. Can.8:125–133 (1951).

    Google Scholar 

  • Babiak, I., Dobosz, S., Goryczko, K., Kuzminski, H., Brzuan, P., Ciesielski, S. Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology 57:1229–1249 (2002).

    Article  PubMed  Google Scholar 

  • Broughton, R.E., Malam, J.E., Roe, B.A. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res. 11:1958–1967 (2001).

    PubMed  Google Scholar 

  • Bubenshchikova, E., Ju, B., Pristyazhnyuk, I., Niwa, K., Kaftanovskaya, E., Kinoshita, M., Ozato, K., Wakamatsu, Y. Generation of fertile and diploid fish, Medaka (Oryzias latipes), from nuclear transplantation of blastula and four-somite-stage embryonic cells into nonenucleated unfertilized eggs. Cloning Stem Cells 7:255–264 (2005).

    Article  PubMed  Google Scholar 

  • Cabrita, E., Robles, V., Chereguini, O., Wallace, J.C., Herraez, M.P. Effect of different cryoprotectants and vitrification solutions on the hatching rate of turbot embryos (Scophthalmus maximus). Cryobiology 47:204–213 (2003a).

    Article  PubMed  Google Scholar 

  • Cabrita, E., Robles, V., Chereguini, O., de Paz, P., Anel, L., Herraez, M.P. Dimethyl sulfoxide influx in turbot embryos exposed to a vitrification protocol. Theriogenology 60:463–473 (2003b).

    Article  PubMed  Google Scholar 

  • Calvi, S.L., Maisse, G. Cryopreservation of rainbow trout (Oncorhynchus mykiss) blastomeres: influence of embryo stage on postthaw survival rate. Cryobiology 36:255–262 (1998).

    Article  PubMed  Google Scholar 

  • Chen, S.L., Tian, Y.S. Cryopreservation of flounder (Paralichthys alivaceus) embryos by vitrification. Theriogenology 63:1207–1219 (2005).

    Article  PubMed  Google Scholar 

  • Combs, B.D. Effect of temperature on the development of salmon eggs. Prog. Fish. Cult. 7:134–137 (1965).

    Article  Google Scholar 

  • Combs, B.D., Burrows, R.E. Threshold temperatures for the normal development of chinook salmon eggs. Prog. Fish Cult. 1:3–6 (1957).

    Article  Google Scholar 

  • Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Anchordoguy, J.T., Drobin, E. Lipid phase transitions measured in intact cells with Fourier Transform infrared spectroscopy. Cryobiology 26:76–84 (1989).

    Article  PubMed  Google Scholar 

  • Di Berardino, M. Animal cloning–the route to new genomics in agriculture and medicine. Differentiation 68:67–83 (2001).

    Article  PubMed  Google Scholar 

  • Dinnyes, A., Urbanyi, B., Baranyai, B., Magyaryi, I. Chilling sensitivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology 50:1–13 (1998).

    Article  PubMed  Google Scholar 

  • Drobnis, E.Z., Crowe, L.M., Berger, T., Anchordoguy, T.J., Overstreet, J.W., Crowe, J.H. Cold shock damage is due to lipid phase transition in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265:432–437 (1993).

    Article  PubMed  Google Scholar 

  • Edashige, K., Yamaji, Y., Kleinhans, F.W., Kasai, M. Artificial expression of aqauporin-3 improves the survival of mouse oocytes after cryopreservation. Biol. Reprod. 68:87–94 (2003).

    Article  PubMed  Google Scholar 

  • Edashige, K., Valdez, D.M., Jr., Hara, T., Saida, N., Seki, S., Kasai, M. Japanese Flounder (Paralichthys alivaceus) embryos are difficult to cryopreserved by vitrification. Cryobiology 53:96–106 (2006).

    Google Scholar 

  • Fahy, G.M. Cryoprotectant toxicity: biochemical or osmotic? Cryo Lett. 5:79–90 (1984).

    Google Scholar 

  • Fahy, G.M. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology 23:1–23 (1986).

    Article  PubMed  Google Scholar 

  • Fahy, G.M., MacFarlane, D.R., Angell, C.A., Meryman, H.T. Vitrification as an approach to cryopreservation. Cryobiology 21:407–426 (1984).

    Article  PubMed  Google Scholar 

  • Fahy, G.M., Lilley, T.H., Linasell, H., Douglas, M.H., Meryman, H.T. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 27:247–268 (1990).

    Article  PubMed  Google Scholar 

  • Garside, E.T. Effects of oxygen in relation to temperature on the development of embryos of brook trout and rainbow trout. J. Fish. Res. Bd. Can. 23:1121–1134 (1966).

    Google Scholar 

  • Grout, B.W.W., Morris, G.J. Freezing and cellular organization. In: Grout, B.W., Morris, G.J. (eds.), Effect of Low Temperatures on Biological Systems. Arnold, London, pp. 147–173 (1987).

    Google Scholar 

  • Grout, B., Morris, J., Mclellan, M. Cryopreservation and the maintenance of cell lines. Trends Biotechnol. 8:293–297 (1990).

    Article  PubMed  Google Scholar 

  • Hagedorn, M., Kleinhans, F. Problems and prospects in cryopreservation of fish embryos. In: Tiersch, T.R., Mazik, P.M. (eds.), Cryopreservation in Aquatic Species. World Aquaculture Society, Baton Rouge, LA, pp. 161–178 (2000).

    Google Scholar 

  • Hagedorn, M., Hsu, E.W., Pilatus, U., Wildt, D., Rall, W.F., Blackband, S.J. Magnetic resonance microscopy and spectroscopy reveal kinetics of cryoprotectant permeation in a multicompartmental biological system. Proc. Natl. Acad. Sci. USA 93:7454–7459 (1996).

    Article  PubMed  Google Scholar 

  • Hagedorn, M., Kleinhanas, F.W., Artemov, D., Pilatus, U. Characterization of a major permeability barrier in the zebrafish embryo. Biol. Reprod. 59:1240–1250 (1998).

    Article  PubMed  Google Scholar 

  • Hagedron, M., Lance, S.L., Fonseca, D.M., Kleinhans, F.W., Artimov, D., Fleischer, R., Hoque, A.T.M.S., Hamilton, M.B., Pukazhenthi, B.S. Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation. Biol. Reprod. 67:961–966 (2002).

    Google Scholar 

  • Harvey, B. Cooling of embryonic cells, isolated blastoderm and intact embryos of the zebrafish Brachydanio rerio to −196°C. Cryobiology 20:440–447 (1983).

    Article  PubMed  Google Scholar 

  • Harvey, B., Ashwood-Smith, M.J. Cryoprotectant penetration and suppercooling in the eggs of samonid fishes. Cryobiology 19:29–40 (1982).

    Article  PubMed  Google Scholar 

  • Isayeva, A., Zhang, T., Rawson, D.M. Studies on chilling sensitivity of zebrafish (Danio rerio) oocytes. Cryobiology 49:114–122 (2004).

    Article  PubMed  Google Scholar 

  • Jensen, J.O.T., Alderdice, D.F. Effect of temperature on short-term storage of eggs and sperm of chum salmon (Oncorhynchus keta). Aquaculture 37:251–265 (1984).

    Article  Google Scholar 

  • Karow, A.M., Jr. Cryoprotectants–a new class of drugs. J. Pharm. Pharmacol. 21:209–223 (1969).

    PubMed  Google Scholar 

  • Kobayashi, T., Takeuchi, Y., Takeuchi, Y., Yoshizaki, G. Generation of viable fish from cryopreserved primordial germ cells. Mol. Reprod. Dev. 74:207–213 (2007).

    Article  PubMed  Google Scholar 

  • Kobayashi, T., Takeuchi, Y., Yoshizaki, G., Takeuchi, Y. Cryopreservation of trout primordial germ cells: a novel techniques for preservation of fish genetic resources. Fish Physiol. Biochem. 28:479–480 (2003).

    Article  Google Scholar 

  • Kobayashi, T., Yoshizaki, G., Takeuchi, Y., Takeuchi, T. Isolation of highly pure and viable primordial germ cells from rainbow trout by GFP-dependent flow cytometery. Mol. Reprod. Dev. 67:91–100 (2004).

    Article  PubMed  Google Scholar 

  • Kusuda, S., Teranishi, T., Koide, N. Cryopreservation of chum salmon blastomeres by the straw method. Cryobiology 45:60–67 (2002).

    Article  PubMed  Google Scholar 

  • Kusuda, S., Teranishi, T., Koide, N., Nagai, T., Arai, K., Yamaha, E. Pluripotency of cryopreserved blastomeres of the goldfish. J. Exp. Zool. 301A:131–138 (2004).

    Article  Google Scholar 

  • Lahnsteiner, F. Cryopreservation protocols for sperm of salmonid fishes. In: Tiersch, T.R., Mazik, P.M. (eds.), Cryopreservation in Aquatic Species. The World Aquaculture Society, Baton Rouge, LA, pp. 91–100 (2000).

    Google Scholar 

  • Lance, S.L., Peterson, A.S., Hagedorn, M. Developmental expression of aquaporin-3 in zebrafish embryos (Danio rerio). Comp. Biochem. Physiol. C 138:251–258 (2004).

    Google Scholar 

  • Lee, K.-Y., Huang, H., Ju, B., Yang, Z., Lin, S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Natl. Biotechol. 20:795–799 (2002).

    Google Scholar 

  • Liu, X.H., Zhang, T., Rawson, D.M. The effect of partial removal of yolk on the chilling sensitivity of zebrafish (Danio rerio) embryos. Cryobiology 39:236–242 (1999).

    Article  PubMed  Google Scholar 

  • Loeffler, C.A., Lovtrup, S. Water balance in the salmon egg. J. Exp. Biol. 52:291–298 (1970).

    Google Scholar 

  • Lubzens, E., Pekarsky, I., Blais, I., Meiri, I. Evaluating viability of fish oocytes: a first step towards methods for cryopreservation. Cryobology 47:268 (2003).

    Google Scholar 

  • Lubzens, E., Pekarsky, I., Blais, I. Developing methods for cryopreservation of fish oocytes: accumulation of [14C] methods in zebrafish and gilthead seabream oocytes. Cryobiology 49:319 (2004).

    Google Scholar 

  • Lubzens, E., Pekarsky, I., Blais, I., Cionna, C., Carnevali O. Cryopreservation of oocytes from a marine fish: achievements and obstacles. Cryobiology 51:385 (2005).

    Google Scholar 

  • Maddock, B.G. A technique to prolong the incubation period of brown trout ova. Prog. Fish Cult. 36:219–222 (1974).

    Article  Google Scholar 

  • Magyary, I., Dinnyes, A., Varkonyi, E., Szabo, R., Varadi, L. Cryopreservation of fish embryos and embryonic cells, Aquaculture 137:103–108 (1996).

    Google Scholar 

  • Maisse, G. Cryopreservation of fish semen: a review. In: Refrigeration and Aquaculture Conference Bordeaux, 20–22/03/96. International Institute of Refrigeration, Paris, pp. 443–467.

    Google Scholar 

  • Marr, D.H.A. Influence of temperature on the efficiency of growth of salmonid embryos. Nature 11:957–959 (1966).

    Article  Google Scholar 

  • Mazur, P. Causes of injury in frozen and thawed cells. Fed. Proc. 24:75–182 (1965).

    Google Scholar 

  • Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247C:125–142 (1984).

    Google Scholar 

  • Mazur, P. Principles of Cryobiology. In: Fuller, B., Lane, N., Benson, E. (eds.), Life in the Frozen State. T&F, London, pp. 415–435 (2004).

    Google Scholar 

  • Morris, G.J. Direct chilling injury. In: Grout, B.W., Morris, G.J. (eds.), Effect of Low Temperatures on Biological Systems. Arnold, London, pp. 120–146 (1987).

    Google Scholar 

  • Nillson, E.E., Cloud, J.G. Cryopreservation of rainbow trout (Oncorynchus mykiss) blastomeres. Aquat. Living Resour. 6:77–80 (1993).

    Article  Google Scholar 

  • Niwa, K., Ladygina, T., Kinoshita, M., Ozato, K., Wakamatsu, Y. Transplantation of blastula nuclei to non-enucleated eggs in medaka, Oryzias latipes. Dev. Growth Differ. 41:163–172 (1999).

    Google Scholar 

  • Niwa, K., Kani, S., Kinoshita, M., Ozato, K., Wakamatsu, Y. Expression of GFP in nuclear transplants generated by transplantation of embryonic cell nuclei from GFP-transgenic fish into non-enucleated eggs of medaka, Oryzias latipes. Cloning 2:23–34 (2000).

    Google Scholar 

  • Okutsu, T., Suzuki, K., Takeuchi, Y., Takeucji, T., Yoshizaki, G. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. USA 103:2725–2729 (2006).

    Article  PubMed  Google Scholar 

  • Pearl, M., Arav, A. Chilling sensitivity in zebrafish (Brachiodanyo rerio) oocyte is related to lipid phase transition. Cryo Lett. 21:171–178 (2000).

    Google Scholar 

  • Pegg, D.E., Arnaud, F.G. The optimization of a mixture of two permeating cryoprotectants. Cryobiology 25:509–510 (1988).

    Article  Google Scholar 

  • Pelegri, F. Maternal factors in zebrafish development. Dev. Dyn. 22:535–554 (2003).

    Article  Google Scholar 

  • Plachinta, M., Zhang, T., Rawson, D.M. Studies on cryoprotectant toxicity to zebrafish (Danio rerio) oocytes. Cryo Lett. 25:415–424 (2004a).

    Google Scholar 

  • Plachinta, M., Zhang, T., Rawson, D.M. Preliminary studies on cryopreservation of zebrafish (Danio rerio) vitellogenic oocytes using controlled slow cooling. Cryobiology 49:347 (2004b).

    Google Scholar 

  • Plachinta, M., Zhang, T., Rawson, D.M. Studies on the effect of certain supplements in cryoprotective medium on zebrafish (Danio rerio) oocytes quality after controlled slow cooling. Cryobiology 51:405 (2005).

    Google Scholar 

  • Poon, D.C., Johnson, S. The effect of delayed fertilization on transported salmon eggs. Prog. Fish Cult. 4:81–84 (1970).

    Article  Google Scholar 

  • Prescott, D.M. Effect of activation on the water permeability of salmon eggs. J. Cell. Comp. Physiol. 45:1–12 (1955).

    Article  Google Scholar 

  • Pullin, R.S.V., Bailey, H. Progress in storing marine flatfish eggs at low temperatures. Rapp. P. Reun. Cons. Int. Explor. Mer. 178:514–517 (1981).

    Google Scholar 

  • Rana, K.J., Gilmour, A. Cryopreservation of fish spermatozoa: effect of cooling methods on the reproducibility of cooling rates and viability. Refrigeration and Aquaculture Conference, Bordeaux, pp. 3–12 (1996).

    Google Scholar 

  • Rall, W.F. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387–402 (1987).

    Article  PubMed  Google Scholar 

  • Rall, W.F. Advances in the cryopreservation of embryos and prospects for application to the conservation of salmonid fishes. In: Gloud, J.G., Thorgaard, G.H. (eds.), Genetic Conservation of Salmonid Fishes. Plenum Press, New York, pp. 137–158 (1993).

    Google Scholar 

  • Robles, V., Cabrita, E., Real, M., Alvarez, R., Herraez, M.P. Vitrification of turbot embryos: preliminary assays. Cryobiology 47:30–39 (2003).

    Article  PubMed  Google Scholar 

  • Robles, V., Cabrita, E., Fletcher, G.L., Shears, M.A., King, M.J., Herraez, M.P. Vitrification assays with embryos from a cold tolerant sub-arctic fish species. Theriogenology 64:1633–1646 (2005).

    Article  PubMed  Google Scholar 

  • Routray, P., Suzuki, T., Strussmann, C.A., Takai, R. Factors affecting the uptake of DMSO by the eggs and embryos of medaka, Oryzias latipes. Therogenology 58:1483–1496 (2002).

    Google Scholar 

  • Shepard, M.L., Goldstone, C.S., Cocks, F.H. The H2O-NaCl-glycerol phase diagram and its application in cryobiology. Cryobiology 13:9–23 (1976).

    Article  PubMed  Google Scholar 

  • Strussmann, C.A., Nakatsugawa, H., Takashima, F., Hasobe, M., Suzuki, T., Takai, R. Cryopreservation of isolated fish blastomeres: effects of cell stage, cryoprotectant concentration, and cooling rate on postthawing survival. Cryobiology 39:252–261 (1999).

    Article  PubMed  Google Scholar 

  • Takeuchi, Y., Yoshizaki, G., Takeuchi, T. Production of germ-line chimeras in rainbow trout by blastomere transplantation. Mol. Reprod. Dev. 59:380–389 (2001).

    Article  PubMed  Google Scholar 

  • Takeuchi, Y., Yoshizaki, G., Kobayashi, T., Takeuchi, T. Mass isolation of primordial germ cells from transgenic rainbow trout carrying the green fluorescent protein gene driven by the vasa gene promoter. Biol. Reprod. 67:1087–1092 (2002).

    Article  PubMed  Google Scholar 

  • Takeuchi, Y., Yoshizaki, G. Takeuchi, T. Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol. Reprod. 69:1142–1149 (2003).

    Article  PubMed  Google Scholar 

  • Takeuchi, Y., Yoshizaki, G., Takeuchi, T. Surrogate broodstock produces salmonids. Nature 430:629–630 (2004).

    Article  PubMed  Google Scholar 

  • Tiersch, T.R., Mazik, P.M. Cryopreservation in Aquatic Species. World Aquaculture Society, Baton Rouge, LA (2000).

    Google Scholar 

  • Toner, M., Cravalho, E.G., Karel, M. Cellular response of mouse oocytes to freezing stress: prediction of intracellular ice formation. J. Biomech. Eng. 115:169–174 (1993).

    Article  PubMed  Google Scholar 

  • Traut, W., Winking, H. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res. 9:659–672 (2001).

    Article  PubMed  Google Scholar 

  • Tsvetkova, L.I., Cosson, J., Linhart, O., Billard, R. Motility and fertilizing capacity of fresh and frozen-thawed spermatozoa in sturgeons Acipenser baeri and A. ruthenus. J. Appl. Ichthyol. 12:107–112 (1996).

    Google Scholar 

  • Valdez, M.D., Jr., Miyamoto, A., Hara, T., Edashige, K., Kasai, M. Sensitivity to chilling of medaka (Orysias latipes) embryos at various developmental stages. Theriogenology 64:112–122 (2005).

    Google Scholar 

  • Valdez, M.D., Jr., Hara, T., Miyamoto, A., Seki, S., Jin, B., Kasai, M., Edashige, K. Expression of aqauporin-3 improves the permeability to water and cryoprotectants of immature oocytes in the medaka (Orysias latipes). Cryobiology 53:160–168 (2006).

    Google Scholar 

  • Wakamatsu, Y., Ju, B., Pristyaznhyuk, I., Niwa, K., Ladygina, T., Kinoshita, M., Araki, K., Ozato, K. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc. Natl. Acad. Sci. USA 98:1071–1076 (2001).

    Article  PubMed  Google Scholar 

  • Watson, P.F., Fuller, B.J. Principles of Cryopreservation of Gametes and Embryos. In: Watson, P.F., Holt, W.V. (eds.), Cryobanking the Genetic Resource: Wildlife Conservation for the Future? T&F, London, pp. 156–170 (2001).

    Google Scholar 

  • Yoshizaki, G., Takeuchi, Y., Sakatani, S., Takeuchi, T. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int. J. Dev. Biol. 44:323–326 (2000).

    PubMed  Google Scholar 

  • Yoshizaki, G., Tagi, Y., Takeuchi, Y., Sawatari, E., Kobayashi, T., Takeuchi, T. Green fluorescent protein labeling of primordial germ cells using nontransgenic method and its application for germ cell transplantation in salmonidae. Biol. Reprod. 73:88–93 (2005).

    Article  PubMed  Google Scholar 

  • Zhang, X.S., Zhao, L., Hua, T.C., Chen, X.H., Zhu, H.Y. A study on the cryopreservation of common carp (Cyprinus carpio) embryos, Cryo Lett. 10:271–278 (1989).

    Article  Google Scholar 

  • Zhang, T.T., Rawson, D.M., Morris, G.J. Cryopreservation of pre-hatch embryos of zebrafish (Brachydanio rerio). Aquat. Living Resour. 6:145–153 (1993).

    Article  Google Scholar 

  • Zhang, T., Rawson, D.M. Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32:239–246 (1995).

    Article  Google Scholar 

  • Zhang, T., Rawson, D.M. Permeability of the vitelline membrane of zebrafish (Brachydanio rerio) embryos to methanol and propane-1, 2,-diol. Cryo Lett. 17:273–280 (1996).

    Google Scholar 

  • Zhang, T., Rawson, D.M. Permeability of dechorionated 1-cell and 6-somite stage zebrafish (Brachydanio rerio) embryos to water and methanol. Cryobiology 37:13–21 (1998).

    Article  PubMed  Google Scholar 

  • Zhang, T., Isayeva, A., Adams, S.L., Rawson, D.M. Studies on membrane permeability of zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants. Cryobiology 50:285–293 (2005a).

    Article  PubMed  Google Scholar 

  • Zhang, T., Plachinta, M., Kopeika, J., Rawson, D.M., Cionna, C., Tosti, L., Carnevali, O. Membrane integrity and cathepsin activities of zebrafish (Danio rerio) oocytes after freezing to −196°C using controlled slow cooling. Cryobiology 51:385–386 (2005b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zhang, T., Rawson, D.M., Pekarsky, I., Blais, I., Lubzens, E. (2007). Low-temperature preservation of fish gonad cells and oocytes. In: Babin, P.J., Cerdà, J., Lubzens, E. (eds) The Fish Oocyte. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6235-3_14

Download citation

Publish with us

Policies and ethics