Skip to main content

High Intellectual and Creative Educational Multimedia Technologies for the Gifted

  • Chapter
International Handbook on Giftedness

Abstract

This chapter presents high intellectual and creative educational multimedia technologies (HICEMTs) as one of the possible methods for gifted education in the near future. HICEMTs will constitute one of the innovative breakthroughs in science and technology of the 21st century and will lead to a new wave of innovations in psychology and education in general and gifted education in particular. HICEMTs appear at the intersection of many subdisciplines of psychology (including general, cognitive, developmental, educational, personality, media, cyber, and applied psychology), education, and multimedia. The general and specific nature of HICEMTs is described in this chapter. The importance of HICEMTs is discussed from an educational, psychological, societal, economic, and technological perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 669.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 849.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth, S. E., Bibby, P. A., & Wood, D. J. (1997). Information technology and multiple representations. Journal of Information Technology for Teacher Education, 6, 93–104.

    Google Scholar 

  • Allen, B. S., & Otto, R. G. (1996). Media as lived environments. In D. H. Jonassen (Ed.), Handbook of research for educational communica0tions and technology (pp. 199–225). New York: Macmillan.

    Google Scholar 

  • Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10, 123–167.

    Google Scholar 

  • Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview.

    Google Scholar 

  • Anderson, J. R., Boyle, C., & Reiser, B. (1985). Intelligent tutoring systems. Science, 228, 456–462.

    Google Scholar 

  • Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4, 167–207.

    Google Scholar 

  • Bereiter, C. (1994). Implications of postmodernism for science, or, science as progressive discourse. Educational Psychologist, 29, 3–12.

    Google Scholar 

  • Bereiter, C., & Scardamalia, M. (1993). Surpassing ourselves. Chicago: Open Court.

    Google Scholar 

  • Bjorklund, D. F., & Schneider, W. (1996). The interaction of knowledge, aptitude, and strategies in children’s memory development. In H. W. Reese (Ed.), Advances in child development and behavior (pp. 59–89). San Diego, CA: Academic Press.

    Google Scholar 

  • Blease, D. (1988). Evaluating educational software. London: Croom Helm.

    Google Scholar 

  • Bliss, J., & Ogborn, J. (1989). Tools for exploratory learning. Journal of Computer Assisted Learning, 5, 37–50.

    Google Scholar 

  • Borkowski, J. G. (1992). Metacognitive theory: A framework for teaching literacy, writing, and math skills. Journal of Learning Disabilities, 25, 253–257.

    Google Scholar 

  • Borkowski, J. G., & Peck, V. A. (1986). Causes and consequences of metamemory in gifted children. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (pp. 182–200). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Bowen, S., Shore, B. M., & Cartwright, G. F. (1993). Do gifted children use computers differently? Gifted Education International, 8, 151–154.

    Google Scholar 

  • Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 1, pp. 77–165). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Brown, A. L. (1984). Metacognition, executive control, self-regulation, and other even more mysterious mechanisms. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation, and learning (pp. 60–108). Stuttgart, West Germany: Kuhlhammer.

    Google Scholar 

  • Brown, A. L. (1994). The advancement of learning. Educational Researcher, 23, 4–12.

    Google Scholar 

  • Brown, A. L., & Palincsar, A. S. (1989). Guided, cooperative learning and individual knowledge acquisition. In L. B. Resnick (Ed.), Knowing, learning, and instruction (pp. 76–108). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18, 32–41.

    Google Scholar 

  • Callear, D. (1999, September–October). Intelligent tutoring environments as teacher substitutes: Use and feasibility. Educational Technology, 6–11.

    Google Scholar 

  • Campione, J. C., & Brown, A. L. (1978). Toward a theory of intelligence: Contributions from research with retarded children. Intelligence, 2, 279–304.

    Google Scholar 

  • Carlson, S., & Firpo, J. (2001). Integrating computers into teaching: findings from a 3-year program in 20 developing countries. In L. R. Vandervert, L. V. Shavinina, & R. Cornell, (Eds.), Cyber education: The future of long distance learning (pp. 85–114). New York: Liebert Publishers.

    Google Scholar 

  • Case, R. (1995). The development of conceptual structures. In W. Damon, D. Kuhn, & R. Siegler (Eds.), Handbook of child psychology (pp. 745–800). New York: Wiley.

    Google Scholar 

  • Chi, M. T. H., & Greeno, J. G. (1987). Cognitive research relevant to education. In J. A. Sechzer & S. M. Pfafflin (Eds.), Psychology and educational policy (pp. 39–57). New York: New York Academy of Sciences.

    Google Scholar 

  • Chi, M. T. H., & Koeske, R. D. (1983). Network representation of a child’s dinosaur knowledge. Developmental Psychology, 19, 29–39.

    Google Scholar 

  • Clapham, M. M. (2003). The development of innovative ideas through creativity training. In L. V. Shavinina (Ed.), The International handbook on innovation (pp. 366–376). Oxford, UK: Elsevier Science.

    Google Scholar 

  • Cognition and Technology Group at Vanderbilt. (1990). Anchored instruction and its relationship to situated cognition. Educational Researcher, 19, 2–10.

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship. In L. B. Resnick (Ed.), Knowing, learning, and instruction (pp. 154–185). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Costa, E. (Ed.). (1992). New directions for intelligent tutoring systems. Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Detterman, D. K. (Ed.). (1994). Current topics in human intelligence: Vol. 4. Theories of intelligence. Norwood, NJ: Ablex.

    Google Scholar 

  • Editorial introduction to the special issue on Silicon Valley. (1998, November 7). New Scientist, 168, 30.

    Google Scholar 

  • Education in the information society (an initiative of the European Commission). (1996). Bruxelles, Belgium: Office for Official Publications of the European Community.

    Google Scholar 

  • Educational multimedia in Europe (a resolution on educational multimedia prepared by the Counsel of the Ministers of Education of the European countries). (1996). Bruxelles, Belgium: Office for Official Publications of the European Community.

    Google Scholar 

  • Engestrom, Y. (1996). Interobjectivity, ideality, and dialectics. Mind, Culture, and Activity, 3, 259–265.

    Google Scholar 

  • Einstein, A. (1949). Autobiographical notes. In P. A. Schlipp (Ed.), Albert Einstein: Philosopher and scientist (pp. 3–49). New York: The Library of Living Philosophers.

    Google Scholar 

  • Ferrari, M., Taylor, R., & VanLehn, K. (1999). Adapting work simulations for school: Preparing students for tomorrow’s workplace. Journal of Educational Computing Research, 21, 25–53.

    Google Scholar 

  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–235). Hillside, NJ: Erlbaum.

    Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-development inquiry. American Psychologist, 34, 906–911.

    Google Scholar 

  • Frasson, C., & Gauthier, C. (Eds.). (1990). Intelligent tutoring systems. Norwood, NJ: Ablex.

    Google Scholar 

  • Gates, W. H. (1999, March 22). Bill Gates’ new rules. Time, 153, 30–35.

    Google Scholar 

  • Goforth, D. (1994). Learner control = decision making + information: A model and meta-analysis. Journal of Educational Computing Research, 11, 1–26.

    Google Scholar 

  • Grabinger, R. S., & Dunlap, J. C. (1995). Rich environments for active learning. Association for Learning Technology Journal, 2, 5–34.

    Google Scholar 

  • Gredler, M. E. (1990). Analyzing deep structure in games and simulations. Simulations/Games for Learning, 20, 329–334.

    Google Scholar 

  • Gredler, M. E. (1992). Designing and evaluating games and simulations: A process approach. London: Kogan Page.

    Google Scholar 

  • Gredler, M. E. (1996). Educational games and simulations: A technology in search of a (research) paradigm. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 521–540). New York: Macmillan.

    Google Scholar 

  • Hannafin, M. J., & Land, S. M. (1997). The foundations and assumptions of technology-enhanced student centres learning environments. Instructional Science, 25, 167–202.

    Google Scholar 

  • Harper, B., Squires, D., & McDougall, A. (2000). Constructivist simulations: A new design paradigm. Journal of Educational Multimedia and Hypermedia, 9, 115–130.

    Google Scholar 

  • Heinonen, D. P. (1996, June 21). Citoyens de l’Europe. [European Citizens]. Le Monde, p. 3

    Google Scholar 

  • Hiltz, S. R. (1986). The “virtual classroom”: Using computer-mediated communication for university teaching. Journal of Communication, 36, 95–104.

    Google Scholar 

  • Hiltz, S. R. (1990). Evaluating the virtual classroom. In L. M. Harasim (Ed.), Online education: Perspectives on a new environment (pp. 133–183). New York: Praeger.

    Google Scholar 

  • Honebein, P. C., Duffy, T. M., & Fishman, B. J. (1993). Constructivism and the design of authentic learning environments. In T. M. Duffy, J. Lowyck, & D. H. Jonassen (Eds.), Designing environments for constructive learning (pp. 87–108). Berlin: Springer-Verlag.

    Google Scholar 

  • Honour, L., & Evans, B. (1997). Shifting the culture towards electronic learning media: Learning as an interactive experience. In Open classroom II conference: Papers and presentations (pp. 285–294). Athens: Kastaniotis.

    Google Scholar 

  • Javid, M. A. (2001). Edmonds and Kamiak cyberschools: Two innovative emerging models for cybereducation. In L. R. Vandervert, L. V. Shavinina, & R. Cornell (Eds.), CyberEducation: The future of long distance learning (pp. 185–218). Larchmont, NY: Liebert Publishers.

    Google Scholar 

  • Jonassen, D. H. (1993). A manifesto to a constructivist approach to the use of technology in higher education. In T. M. Duffy (Ed.), Designing environments for constructive learning (pp. 231–247). New York: Springer-Verlag.

    Google Scholar 

  • Jonassen, D. H. (Ed.) (1996). Handbook of research for educational communications and technology. New York: Macmillan.

    Google Scholar 

  • Jones, A. E. (1997). Reflection-impulsivity and wholist-analytic: Two fledglings? … or is R-I a cuckoo? Educational Psychology, 17, 65–77.

    Google Scholar 

  • Kholodnaya, M. A. (1983). The integrated structures of conceptual thinking. Tomsk, Russia: Tomsk University Press.

    Google Scholar 

  • Kholodnaya, M. A. (1997). The psychology of intelligence. Moscow: APN Press.

    Google Scholar 

  • Koschmann, T. (Ed.) (1996a). CSCL: Theory and practice of an emerging paradigm. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Koschmann, T. (1996b). Paradigm shifts and instructional technology. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 1–23). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Lan, J., & Gemmill, J. (2000). The networking revolution for the new millennium: Internet 2 and its educational implications. International Journal of Educational Telecommunications, 6, 179–198.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning. New York: Cambridge University Press.

    Google Scholar 

  • Lefebvre, M. (1997). For better or for worse: The multimedia reign. Focus, 3, 20–22.

    Google Scholar 

  • Leont’ev, A. N. (1981). The problem of activity in psychology. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 37–71). Armonk, NY: M. E. Sharpe.

    Google Scholar 

  • Martinsen, O. (1997). The construct of cognitive style and its implications for creativity. High Ability Studies, 8, 135–158.

    Google Scholar 

  • McAteer, E., Tolmie, A., Duffy, C., & Corbett, J. (1997). Computer-mediated communication as a learning resource. Journal of Computer Assisted Learning, 13, 219–227.

    Google Scholar 

  • McLuhan, M. (1964). Understanding media: The extensions of man. New York: McGraw-Hill.

    Google Scholar 

  • Merrill, D. C., Reiser, B. J., Ranney, M., & Trafton, J. G. (1992). Effective tutoring techniques: A comparison of human tutors and intelligent tutoring systems. Journal of the Learning Sciences, 2, 277–306.

    Google Scholar 

  • Miller, A. (1996). Insights of genius: Visual imagery and creativity in science and art. New York: Springer-Verlag.

    Google Scholar 

  • Mumford, M. (2008). Cognitive approaches to creativity. In M. A. Runco (Ed.), Handbook of creativity (Vol. 2). Norwood, NJ: Ablex.

    Google Scholar 

  • Norman, D. A. (1993). Things that make us smart. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Olson, D. R. (1986). Intelligence and literacy: The relationships between intelligence and the technologies of representation and communication. In R. J. Sternberg & R. K. Wagner (Eds.), Practical intelligence (pp. 338–360). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Oren, A., Nachmias, R., Mioduser, D., & Lahav, O. (2000). Learnet–A model for virtual learning communities in the World Wide Web. International Journal of Educational Telecommunications, 6, 141–157.

    Google Scholar 

  • Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New York: Basic Books.

    Google Scholar 

  • Park, O. (1996). Adaptive instructional systems. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 634–664). New York: Macmillan.

    Google Scholar 

  • Park, O., Perez, R. S., & Seidel, R. J. (1987). Intelligent CAI: Old wine in new bottles or a new vintage? In G. Kearsley (Ed.), Artificial intelligence and instruction: Applications and methods (pp. 11–45). Reading, MA: Addison–Wesley.

    Google Scholar 

  • Park, O., & Seidel, R. J. (1989). A multidisciplinary model for development of intelligent computer-assisted instruction. Educational Technology Research and Development, 37, 78–80.

    Google Scholar 

  • Pressley, M., Borkowski, J. G., & Schneider, W. (1987). Cognitive strategies: Good strategy users coordinate metacognition and knowledge. In R. Vasta (Ed.), Annals of child development (Vol. 4, pp. 89–129). Greenwich, CT: JAI Press.

    Google Scholar 

  • Psotka, J., Massey, L. D., & Mutter, S. A. (Eds.). (1988). Intelligent tutoring systems: Lessons learned. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Rabinowitz, M., & Glaser, R. (1985). Cognitive structure and process in highly competent performance. In F. D. Horowitz & M. O’Brien (Eds.), The gifted and talented: Developmental perspectives (pp. 75–97). Washington, DC: American Psychological Association.

    Google Scholar 

  • Rapaport, M. (1991). Computer-mediated communications. New York: Wiley.

    Google Scholar 

  • Reis, S. M., & Renzulli, J. S. (2003). Developing high potentials for innovation in young people through the schoolwide enrichment model. In L. V. Shavinina (Ed.), The international handbook on innovation (pp. 333–346). Oxford, UK: Elsevier Science.

    Google Scholar 

  • Riding, R. (1997). On the nature of cognitive style. Educational Psychology, 17, 29–49.

    Google Scholar 

  • Rieber, L. P. (1992). Computer-based microworlds: A bridge between constructivism and direct instruction. Educational Technology Research and Development, 40, 93–106.

    Google Scholar 

  • Roberts, J. M. (1996). The story of distance education: A practitioner’s perspective. Journal of the American Society for Information Science, 47, 811–816.

    Google Scholar 

  • Romiszowski, A. J. (1992). Computer-mediated communications. Englewood Cliffs, NJ: Educational Technology.

    Google Scholar 

  • Romiszowski, A. J., & Mason, R. (1996). Computer-mediated communication. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 438–456). New York: Macmillan.

    Google Scholar 

  • Root-Bernstein, R., & Root-Bernstein, M. (2003). Intuitive tools for innovative thinking. In L. V. Shavinina (Ed.), The International Handbook on Innovation (pp. 377–387). Oxford, UK: Elsevier Science.

    Google Scholar 

  • Runco, M. A. (Ed.) (2008). Handbook of creativity (Vols. 1 and 2). Norwood, NJ: Ablex.

    Google Scholar 

  • Runco, M. A., & Albert, R. S. (Eds.) (1990). Theories of creativity. Newbury Park, CA: Sage.

    Google Scholar 

  • Salomon, G., Perkins, D., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20, 2–9.

    Google Scholar 

  • Savery, J. R., & Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational Technology, 35, 31–38.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. Journal of the Learning Sciences, 3, 265–283.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (1996). Engaging students in a knowledge society. Educational Leadership, 11, 6–10.

    Google Scholar 

  • Scardamalia, M., Bereiter, C., McLean, R., Swallow, J., & Woodruff, E. (1989). Computer supported intentional learning environments. Journal of Educational Computing Research, 5, 51–68.

    Google Scholar 

  • Schneider, W. (1993). Domain-specific knowledge and memory performance in children. Educational Psychology Review, 5, 257–273.

    Google Scholar 

  • Schofield, J. W., & Evans-Rhodes, D. (1989). Artificial intelligence in the classroom. In D. Bierman, J. Greuker, & J. Sandberg (Eds.), Artificial intelligence and education (pp. 238–243). Springfield, VA: IOS.

    Google Scholar 

  • Schuler, J. (1996). Cyberspace as dream world. (Retrieved January 18, 1998, from the World Wide Web: http://www.rider.edu/~suler/psycyber/cybdream.htm)

  • Seidel, R. J., & Park, O. (1994). An historical perspective and a model for evaluation of ITS. Journal of Educational Computing Research, 10, 103–128.

    Google Scholar 

  • Seidel, R. J., Park, O., & Perez, R. S. (1988). Expertise of ICAI: Development requirements. Computers in Human Behavior, 1, 235–256.

    Google Scholar 

  • Shavinina, L. V. (1996a). The objectivization of cognition and intellectual giftedness. High Ability Studies, 7, 91–98.

    Google Scholar 

  • Shavinina, L. V. (1996b). Specific intellectual intentions and creative giftedness. In A. J. Cropley & D. Dehn (Eds.), Fostering the growth of high ability: European perspectives (pp. 373–381). Norwood, NJ: Ablex.

    Google Scholar 

  • Shavinina, L. V. (1997a, July). Educational multimedia of “tomorrow”: High intellectual and creative psychoeducational technologies. (Paper presented at the European Congress of Psychology, Dublin, Ireland)

    Google Scholar 

  • Shavinina, L. V. (1997b, September). High intellectual and creative technologies as an educational multimedia of the 21st century. (Paper presented at the European Open Classroom II Conference: School Education in the Information Society, Sisi, Crete, Greece)

    Google Scholar 

  • Shavinina, L. (1998a). Interdisciplinary innovation: Psychoeducational multimedia technologies. New Ideas in Psychology, 16, 189–204.

    Google Scholar 

  • Shavinina, L. V. (1998b). On Miller’s insights of genius: What do we know about it? Creativity Research Journal, 12, 183–185.

    Google Scholar 

  • Shavinina, L. V. (2000). High intellectual and creative educational multimedia technologies. CyberPsychology & Behaviour, 3, 1–8.

    Google Scholar 

  • Shavinina, L. V. (2003). Understanding scientific innovation: The case of Nobel Laureates. In L. V. Shavinina (Ed.), The international handbook on innovation (pp. 445–457). Oxford, UK: Elsevier Science.

    Google Scholar 

  • Shavinina, L. V., & Ferrari, M. (Eds.) (2004). Beyond Knowledge. Mahwah, NJ: Erlbaum Publishers.

    Google Scholar 

  • Shavinina, L. V., & Kholodnaya, M. A. (1996). The cognitive experience as a psychological basis of intellectual giftedness. Journal for the Education of the Gifted, 20, 3–35.

    Google Scholar 

  • Shavinina, L. V., & Loarer, E. (1999). Psychological evaluation of educational multimedia. European Psychologist, 4, 33–44.

    Google Scholar 

  • Shavinina, L. V., & Ponomarev, E. A. (2003). Developing innovative ideas through high intellectual and creative educational multimedia technologies. In L. V. Shavinina (Ed.), The international handbook on innovation (pp. 401–418). Oxford, UK: Elsevier Science.

    Google Scholar 

  • Sherry, L. (2000). The nature and purpose of online discourse. International Journal of Educational Telecommunications, 6, 19–51.

    Google Scholar 

  • Shore, B. M., & Dover, A. C. (1987). Metacognition, intelligence and giftedness. Gifted Child Quarterly, 31, 37–39.

    Google Scholar 

  • Shore, B. M., & Kanevsky, L. S. (1993). Thinking processes: Being and becoming gifted. In K. A. Heller, F. J. Mönks, & A. H. Passow (Eds.), International handbook of research and development of giftedness and talent (pp. 133–147). Oxford, England: Pergamon Press.

    Google Scholar 

  • Shute, V. J. (1991). Who is likely to acquire programming skills? Journal of Educational Computing Research, 7, 1–24.

    Google Scholar 

  • Shute, V. J., & Glaser, R. (1990). A large-scale evaluation of an intelligent discovery world: Smithtown. Interactive Learning Environments, 1, 51–76.

    Google Scholar 

  • Shute, V. J., & Psotka, J. (1996). Intelligent tutoring systems: Past, present, and future. In D. H. Jonassen (Ed.), Handbook of Research for Educational Communications and Technology (pp. 514–563). New York: Macmillan.

    Google Scholar 

  • Simonton, D. K. (1988). Scientific genius: A psychology of science. (New York: Cambridge University Press)

    Google Scholar 

  • Squires, D. (1996). Can multimedia support constructivist learning? Teaching Review, 4, 10–17.

    Google Scholar 

  • Sternberg, R. J. (Ed.) (1982). Handbook of intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (Ed.) (1984). Mechanisms of cognitive development. New York: Freeman.

    Google Scholar 

  • Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (1986). Intelligence applied. San Antonio, TX: Harcourt Brace.

    Google Scholar 

  • Sternberg, R. J. (1987). Intelligence and cognitive style. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning and instruction: Vol. 3. Conative and affective analyses (pp. 77–97). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Sternberg, R. J. (Ed.) (1988a). The Nature of Creativity. (New York: Cambridge University Press)

    Google Scholar 

  • Sternberg, R. J. (1988b). A three-facet model of creativity. In R. J. Sternberg (Ed.), The nature of creativity (pp. 125–147). New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (1990). Metaphors of mind: Conceptions of the nature of intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J., & Lubart, T. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: Free Press.

    Google Scholar 

  • Suchman, L. (1987). Plans and situated actions: The problem of human/machine communication. New York: Cambridge University Press.

    Google Scholar 

  • Teaching and learning–Towards cognitive society (a white paper of the European Commission). (1995). Bruxelles, Belgium: Office for Official Publications of the European Community.

    Google Scholar 

  • Tikhomirov, O. K. (1981). The psychological consequences of computerization. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 256–278). Armonk, NY: M. E. Sharpe.

    Google Scholar 

  • Tolmie, A., & Boyle, J. (2000). Factors influencing the success of computer mediated communication (CMC) environments in university teaching. Computers & Education, 34, 119–140.

    Google Scholar 

  • Vandervert, L. R. (1999). Maximizing consciousness across the disciplines: Mechanisms of information growth in general education. In J. S. Jordan (Ed.), Modeling consciousness across the disciplines (pp. 3–25). New York: University Press of America.

    Google Scholar 

  • Vandervert, L. R. (2001). A provocative view of how algorithms of the human brain will embed in cybereducation. In L. R. Vandervert, L. V. Shavinina, & R. Cornell (Eds.), CyberEducation: The future of long distance learning (pp. 41–62). Larchmont, NY: Liebert Publishers.

    Google Scholar 

  • Vandervert, L. R., Shavinina, L. V., & Cornell, R. (Eds.). (2001). CyberEducation: The future of long distance learning. Larchmont, NY: Liebert Publishers.

    Google Scholar 

  • VanLehn, K. (1999). Intelligent tutoring systems. (Retrieved September 12, 2000, from the World Wide Web: http://www.pitt.edu/~vanlehn/ITSseminar9)

  • Verona, M. E. (2001). WebSims–Creating an online science lab. In L. R. Vandervert, L. V. Shavinina, & R. Cornell (Eds.), CyberEducation: The future of long distance learning (pp. 237–256). Larchmont, NY: Liebert Publishers.

    Google Scholar 

  • Wellington, J. J. (1985). Children, computers and the curriculum. New York: Harper & Row.

    Google Scholar 

  • Westera, W., & Sloep, P. (2001). The future of competence learning in cyberreality: The virtual learning company and beyond. In L. R. Vandervert, L. V. Shavinina, & R. Cornell (Eds.), CyberEducation: The future of long distance learning (pp. 115–136). Larchmont, NY: Liebert Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa V. Shavinina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shavinina, L.V. (2009). High Intellectual and Creative Educational Multimedia Technologies for the Gifted. In: Shavinina, L.V. (eds) International Handbook on Giftedness. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6162-2_61

Download citation

Publish with us

Policies and ethics