Skip to main content

Working Memory, the Cognitive Functions of the Cerebellum and the Child Prodigy

  • Chapter
International Handbook on Giftedness

Abstract

During the past 20 years the study of cognitive functions of the cerebellum has become an indispensable part of the neurosciences. In the vein of this growing body of research, Vandervert and Vandervert, Schimpf and Liu proposed that working memory and the adaptive functions of the cerebellum collaborate to produce high intellectual achievements in discovery and innovation. The present chapter extends this framework to a new explanation of the fundamental dynamic of the child prodigy, what Winner refers to as the “rage to master.” It is argued that the extraordinary achievements of child prodigies are the result of domain-specific high-attentional control learned beginning in infancy and constantly modulated between the prefrontal cortex and the cognitive-modeling functions of the cerebellum. It is concluded that this high-attentional control in child prodigies accelerates the production of high intellectual processes in a spontaneous version of deliberate practice as espoused by Ericsson and his colleagues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 669.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 849.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, H., Mathiak, K., & Ivry, R. B. (2004). Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behavioral and Cognitive Neuroscience Reviews, 3, 14–22.

    Article  Google Scholar 

  • Akshoomoff, N., Courchesne, E., & Townsend, J. (1997). Attention coordination and anticipatory control. In J.D. Schmahmann (Ed.), The cerebellum and cognition (pp. 575–598). New York: Academic Press.

    Google Scholar 

  • Andersen, B., Korbo, L., & Pakkenberg, B. (1992). A quantitative study of the human cerebellum with unbiased stereological techniques. The Journal of Comparative Neurology, 326, 549–560.

    Article  Google Scholar 

  • Baddeley, A. (1992, January 31). Working memory. Science, 255, 556–559.

    Article  Google Scholar 

  • Baddeley, A. (1993). Working memory and conscious awareness. In A. Collins, S. Gathercole, M. Conway, & P. Morris (Eds.), Theories of memory (pp. 11–28). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Baddeley, A., & Andrade, J. (2000). Working memory and the vividness of imagery. Journal of Experimental Psychology: General, 129, 126–145.

    Article  Google Scholar 

  • Baddeley, A., & Logie, R. H. (1999). Working memory: The multiple-component model. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). New York: Cambridge University Press.

    Google Scholar 

  • Blackwood, N., Ffytche, D., Simmons, A., Bentall, R., Murray, R., & Howard, R. (2004). The cerebellum and decision making under uncertainty. Cognitive Brain Research, 20, 46–53.

    Article  Google Scholar 

  • Bloedel, J. R., Dichgans, J. & Precht, W. (1985). Cerebellar functions. Berlin: Springer-Verlag.

    Google Scholar 

  • Buonomano, D., & Merzenich, M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    Article  Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.

    Article  Google Scholar 

  • Chein, J. M., Ravizza, S. M., & Fiez, J. A., (2003). Using neuroimaging to evaluate models of working memory and their implications for language processing. Journal of Neurolinguistics, 16, 315–339.

    Article  Google Scholar 

  • Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52, 337–367.

    Article  Google Scholar 

  • Cowan, N. (1999). Embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). New York: Cambridge University Press.

    Google Scholar 

  • Cowan, N. (2005). Understanding intelligence: A summary and an adjustable-attention hypothesis. In O. Wilhelm & R.W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 469–488). London: Sage Publications.

    Google Scholar 

  • Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Desmond, J., & Fiez, J. (1998). Neuroimaging studies of the cerebellum: Language, learning and memory. Trends in Cognitive Sciences, 2, 355–362.

    Article  Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.

    Article  Google Scholar 

  • Einstein, A. (1949). Autobiographical notes. In A. Schilpp (Ed.), Albert Einstein: Philosopher-scientist (Vol. 1, pp. 1–95). La Salle, IL: Open Court.

    Google Scholar 

  • Einstein, A. (1956). Lettres à Maurice Solovine. Paris: Gauthier-Villars.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309–331.

    Article  Google Scholar 

  • Ericsson, K. A. (2002). Attaining excellence through deliberate practice: Insights from the study of expert performance. In M. Ferrari (Ed.), The pursuit of excellence through education (pp. 21–55). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Ericsson, K. A. (2003a). The acquisition of expert performance as problem solving. In J.E. Davidson & R. J. Sternberg (Eds.), The psychology of problem solving (pp. 31–83). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ericsson, K. A. (2003b). The search for general abilities and basic capacities: Theoretical implications from the modifiability and complexity of mechanisms mediating expert performance. In R. J. Sternberg & E. I. Grigorenko (Eds.), The psychology of abilities, competencies, and expertise (pp. 93–125). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.

    Article  Google Scholar 

  • Ericsson, K. A., Roring, R., & Nandagopal, K. (2007) Giftedness and evidence for reproducibly superior performance: An account based on the expert performance framework. High Ability Studies, 18, 3–56.

    Article  Google Scholar 

  • Fox, R. (1988). Energy and the evolution of life. New York: Freeman.

    Google Scholar 

  • Goldman-Rakic, P. S. (1992, September). Working memory and the mind. Scientific American, 267, 111–117.

    Article  Google Scholar 

  • Hadamard, J. (1945). The psychology of invention in the mathematical field. New York: Dover.

    Google Scholar 

  • Hanbrick, D., Kane, M., & Engle, R. (2005). The role of working memory in higher-level cognition: Domain-specific versus domain-general perspectives. In R. Sternberg & J. E. Pretz (Eds.), Cognition and intelligence: Identifying the mechanisms of the mind (pp. 104–121). New York: Cambridge University Press.

    Google Scholar 

  • Heitz, R., Unsworth, N., & Engle, R. (2005). Working memory capacity, attentional control, and fluid intelligence. In O. Wilhelm & R.W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 61–78). London: Sage Publications.

    Google Scholar 

  • Haruno, M., Wolpert, D., & Kawato, M. (1999). Multiple paired forward-inverse models for human motor learning and control. In M. S. Kearns, S. A. Solla & D. A. Cohn (Eds.), Advances in neural information processing systems (pp. 31–37). Cambridge: MIT Press.

    Google Scholar 

  • Haruno, M., Wolpert, D., & Kawato, M. (2001). MOSAIC model for sensorimotor and learning control. Neural Computation, 13(10), 2201–2220.

    Article  Google Scholar 

  • Holton, G. (1979). Constructing a theory: Einstein’s model. The American Scholar, 48, 309–339.

    Google Scholar 

  • Houk, J., & Wise, S. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 2, 95–110.

    Article  Google Scholar 

  • Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007) Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43, 338–349.

    Article  Google Scholar 

  • Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., & Kawato, M. (2003). Modular organization of internal models of tools in the cerebellum. Proceedings of the National Academy of Science, 100(9), 5461–5466.

    Article  Google Scholar 

  • Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., & Pütz, B., et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403, 192–195.

    Article  Google Scholar 

  • Ingvar, D. (1985). “Memory of the future”: An essay on the temporal organization of conscious awareness. Human Neurobiology, 4, 127–136.

    Google Scholar 

  • Ito, M. (1984a). The cerebellum and neural control. New York: Raven Press.

    Google Scholar 

  • Ito, M. (1984b). Is the cerebellum really a computer? Trends in Neurosciences, 2, 122–126.

    Google Scholar 

  • Ito, M. (1991). Neural control as a major aspect of high-order brain function. In J. C. Eccles & O. Creutzfeldt (Eds.), The principles of design and operation of the brain (Experimental Brain Research Supplement, Vol. 20, pp. 281–292). New York: Springer-Verlag.

    Google Scholar 

  • Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neurosciences, 16(11), 448–450.

    Article  Google Scholar 

  • Ito, M. (1997). Cerebellar microcomplexes. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 475–487). New York: Academic Press.

    Google Scholar 

  • Ito, M. (2005). Bases and implications of learning in the cerebellum–adaptive control and internal model mechanism. In C. I. DeZeeuw & F. Cicirata (Eds.), Creating coordination in the cerebellum (Progress in Brain Research, Vol. 148, Chapter. 9, pp. 95–109). Oxford, England: Elsevier Science.

    Chapter  Google Scholar 

  • Ivry, R. (1997). Cerebellar timing systems. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 555–573). New York: Academic Press.

    Google Scholar 

  • Johnson-Laird, P. (1983). Mental models. New York: Cambridge University Press.

    Google Scholar 

  • Kane, M., Bleckley, K., Conway, A., & Engle, R. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169–183.

    Article  Google Scholar 

  • Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual differences perspective. Psychonomic Bulletin & Review, 637–671.

    Google Scholar 

  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.

    Article  Google Scholar 

  • Kawato, M., & Gomi, H. (1992). The cerebellum and VOR/OKR learning models. Trends in Neuroscience, 15, 445–453.

    Article  Google Scholar 

  • Kelly, R., & Strick, P. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience, 23, 8432–8444.

    Google Scholar 

  • Kihlstrom, J. (1987). The cognitive unconscious. Science, 237, 1445–1452.

    Article  Google Scholar 

  • Klein, S. B., Cosmides, L., Tooby, J., & Chance, S. (2002). Decisions and the evolution of memory: Multiple systems, multiple functions. Psychological Review, 109, 306–329.

    Article  Google Scholar 

  • Kornhuber, H. (1974). Cerebral cortex, cerebellum, and basal ganglia: An introduction to their motor functions. In F. Schmitt & F. Worden (Eds.), The neurosciences: Third study program (pp. 267–280). Cambridge, MA: MIT Press.

    Google Scholar 

  • Leiner, H., & Leiner, A. (1997). How fibers subserve computing capabilities: Similarities between brains and machines. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 535–553). New York: Academic Press.

    Google Scholar 

  • Leiner, H., Leiner, A., & Dow, R. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.

    Article  Google Scholar 

  • Leiner, H., Leiner, A., & Dow, R. (1989). Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behavioral Neuroscience, 103, 998–1008.

    Article  Google Scholar 

  • Leiner, H., Leiner, A., & Dow, R. (1991). The human cerebro-cerebellar system: Its computing, cognitive, and language skills. Behavioral Brain Research, 44, 113–128.

    Article  Google Scholar 

  • MacLean, P. (1991). Neofrontocerebellar evolution in regard to computation and prediction: Some fractal aspects of microgenesis. In R. Hanlon (Ed.), Cognitive microgenesis (pp. 3–31). Berlin: Springer.

    Google Scholar 

  • Mandler, J. (1988). How to build a baby: On the development of an accessible representational system. Cognitive Development, 3, 113–136.

    Article  Google Scholar 

  • Mandler, J. (1992a). How to build a baby II: Conceptual primitives. Psychological Review, 99, 587–604.

    Google Scholar 

  • Mandler, J. (1992b). The foundations of conceptual thought in infancy. Cognitive Development, 7, 273–285.

    Google Scholar 

  • Mandler, J. (2004). The foundations of mind: Origins of conceptual thought. Oxford: Oxford University Press.

    Google Scholar 

  • Middleton, F., & Strick, P. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21, 700–712.

    Google Scholar 

  • Miller, E., & Cohen, J. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  Google Scholar 

  • Miyake, A., & Shah, P. (Eds.). (1999). Models of working memory: Mechanisms of active maintenance and executive control. New York: Cambridge University Press.

    Google Scholar 

  • Molinari, M., Petrosini, L., Misciagna, S., & Leggio, M. G. (2004). Visuospatial abilities in cerebellar disorders. Journal of Neurology, Neurosurgery and Psychiatry, 75(2), 235–240.

    Google Scholar 

  • Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Cognitive Brain Research, 22, 129–151.

    Article  Google Scholar 

  • Paulin, M. (1997). Cerebellar involvement in neural representations of moving systems. In J. Schmahmann (Ed.), The cerebellum and cognition (pp. 515–533). New York: Academic Press.

    Google Scholar 

  • Ramnani, N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews Neuroscience, 7, 511–522.

    Article  Google Scholar 

  • Restuccia, D., Marca, G., Valeriani, M., Leggio, M., & Molinari, M. (2006). Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain, 124, 757768.

    Article  Google Scholar 

  • Roland, P.E. (1984). Organization of motor control by the normal human brain. Human Neurobiology, 2, 205–216.

    Google Scholar 

  • Rosenbaum, D., Carlson, R., & Gilmore, R. (2001). Acquisition of intellectual and perceptual-motor skills. Annual Review of Psychology, 52, 453–470.

    Article  Google Scholar 

  • Schmahmann, J. (1996). From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.

    Article  Google Scholar 

  • Schmahmann, J. (Ed.). (1997). The cerebellum and cognition. New York: Academic Press.

    Google Scholar 

  • Schmahmann, J. (1998). Dysmetria of thought: Clinical consequences of cerebellar dysfunction on cognition and affect. Trends in Cognitive Science, 2, 362–371.

    Article  Google Scholar 

  • Schmahmann, J. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry and Clinical Neuroscience, 16, 367–378.

    Article  Google Scholar 

  • Schmahmann, J., & Pandya, D. (1997). The cerebrocerebellar system. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 31–60). New York: Academic Press.

    Google Scholar 

  • Shavinina, L. (1999). The psychological essence of the child prodigy phenomenon: Sensitive periods and cognitive experience. Gifted Child Quarterly, 43(1), 25–38.

    Article  Google Scholar 

  • Teasdale, J., Dritschel, B., Taylor, M., Proctor, L., Lloyd, C., & Nimmo-Smith, I., et al. (1995). Stimulus-independent thought depends on central executive resources. Memory & Cognition, 23, 551–559.

    Article  Google Scholar 

  • Thach, W. T. (1996). On the specific role of the cerebellum in motor learning and cognition: Clues from PET activation and lesion studies in man. Behavioral and Brain Sciences, 19(3), 411–431.

    Article  Google Scholar 

  • Vandervert, L. (2003a). How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas in Psychology, 21, 159–175.

    Google Scholar 

  • Vandervert, L. (2003b). The neurophysiological basis of innovation. In L. V. Shavinina (Ed.) The international handbook on innovation (pp. 17–30). Oxford, England: Elsevier Science.

    Google Scholar 

  • Vandervert, L. (2007) Cognitive functions of the cerebellum explain how Ericsson’s deliberate practice produces giftedness. High Ability Studies, 18(1), 89–92.

    Article  Google Scholar 

  • Vandervert, L. (2008). The evolutionary basis of accelerated learning in the child prodigy. Manuscript submitted for publication.

    Google Scholar 

  • Vandervert, L., Schimpf, P., & Liu, H. (2007a) How working memory and the cerebellum collaborate to produce innovation and creativity. Creativity Research Journal, 19, 1–18.

    Google Scholar 

  • Vandervert, L., Schimpf, P., & Liu, H. (2007b). Rejoinder: Authors’ responses to commentaries. Creativity Research Journal, 19, 59–68.

    Google Scholar 

  • Winner, E. (1996) Gifted children: Myths and realities, (New York, Basic Books).

    Google Scholar 

  • Winner, E. (2000). The origins and ends of giftedness. American Psychologist, 55, 159–169.

    Article  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T.M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.

    Article  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B, 358, 593–602.

    Article  Google Scholar 

  • Wolpert D. M., & Kawato M., (1998). Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry R. Vandervert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vandervert, L.R. (2009). Working Memory, the Cognitive Functions of the Cerebellum and the Child Prodigy. In: Shavinina, L.V. (eds) International Handbook on Giftedness. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6162-2_13

Download citation

Publish with us

Policies and ethics