Skip to main content

A Genomics Approach to Understanding the Biology of Thermo-Acidophilic Red Algae

  • Chapter
Algae and Cyanobacteria in Extreme Environments

While members of the archae rule at the high end of the temperature spectrum of life, members of the bacteria and eukaryotes thrive in a wide range of extreme conditions, including low temperatures, high and low pH-values, high salinity, and desiccation. In this context, it is important to note that the definition of extreme (and thus extremophilic) is anthropocentric, defining those environments as extreme that are hostile to human life. Photosynthetic protists are particularly versatile when it comes to occupying extreme habitats and thriving under extreme conditions. Protists thrive in saturated salt solutions, in hot acid, in extreme cold, and at high pH. This chapter deals with a small group of thermo-acidophilic unicellular red algae, called the Cyanidiophyceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F. et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.

    PubMed  Google Scholar 

  • Albertano, P. and Pinto, G. (1986) The action of heavy metals on the growth of the acidophilic algae. Boll Soc Natur Napoli 45, 319-328.

    Google Scholar 

  • Albertano, P., Ciniglia, C., Pinto, G. and Pollio, A. (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia 433, 137-143.

    Google Scholar 

  • Allen, E.E. and Banfield, J.F. (2005) Communitygenomics in microbial ecology and evolution. Nat Rev Microbiol 3, 489-498.

    CAS  PubMed  Google Scholar 

  • Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M. et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79-86.

    CAS  PubMed  Google Scholar 

  • Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C. and Weber, A.P.M. (2005a) Genome Analysis. Comparative genomics of two closely related uni-cellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria and significant differences in carbo-hydrate metabolism of both algae. Plant Physiol 137, 460-474.

    CAS  PubMed  Google Scholar 

  • Barbier, G.G., Zimmermann, M. and Weber, A.P.M. (2005b) Genomics of the thermo-acidophilic red alga Galdieria sulphuraria. In: R.B. Hoover, G.V. Levin, A.Y. Rozanov, and G.R. Gladstone (eds.) Astrobiology and Planetary Missions SPIE, San Diego, CA, U S A pp. 67-78.

    Google Scholar 

  • Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P. and Lander, E.S. (2002) ARACHNE: A whole-genome shotgun assembler. Genome Res 12, 177-189.

    CAS  PubMed  Google Scholar 

  • Bhattacharya, D. and Medlin, L. (1995) The phylogeny of plastids - a review based on comparisons of small-subunit ribosomal-RNA coding regions. J Phycol 31, 489-498.

    CAS  Google Scholar 

  • Bhattacharya, D. and Medlin, L. (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116,9-15.

    CAS  Google Scholar 

  • Blattner, F.R., Plunkett, G., 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F. et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1474.

    CAS  PubMed  Google Scholar 

  • Boenzi, D., Deluca, P. and Taddei, R. (1977) Fatty acids in Cyanidium. Giorn Bot Ital 1111, 129-134.

    Google Scholar 

  • Bono H., Ogata H., Goto S. and Kanehisa M. (1998) Reconstruction of amino acid biosynthesis path-ways from the complete genome sequence. Genome Res 8, 203-210.

    CAS  PubMed  Google Scholar 

  • Bowers, P.M., Cokus, S.J., Eisenberg, D. and Yeates, T.O. (2004a) Use of logic relationships to deci-pher protein network organization. Science 306, 2246-2249.

    CAS  PubMed  Google Scholar 

  • Bowers, P.M., Pellegrini, M., Thompson, M.J., Fierro, J., Yeates, T.O. and Eisenberg, D. (2004b) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5, R35.

    PubMed  Google Scholar 

  • Bowers, P.M., O’Connor, B.D., Cokus, S.J., Sprinzak, E., Yeates, T.O. and Eisenberg, D. (2005) Utilizing logical relationships in genomic data to decipher cellular processes. FEBS J 272, 5110-5118.

    CAS  PubMed  Google Scholar 

  • Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268, 78-94.

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2002a) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12, R62-64.

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2002b) Nucleomorphs: enslaved algal nuclei. Curr Opin Microbiol 5, 612-619.

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358, 109-134.

    CAS  PubMed  Google Scholar 

  • Chen, L. and Vitkup, D. (2006) Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol 7, R17.

    PubMed  Google Scholar 

  • Chervitz, S.A., Aravind, L., Sherlock, G., Ball, C.A., Koonin, E.V., Dwight, S.S., Harris, M.A., Dolinski, K., Mohr, S., Smith, T. et al. (1998) Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282, 2022-2028.

    CAS  PubMed  Google Scholar 

  • Church, G., Shendure, J. and Porreca, G. (2006) Sequencing thoroughbreds. Nat Biotechnol 24, 139.

    CAS  PubMed  Google Scholar 

  • Ciniglia, C., Yoon, H.S., Pollio, A., Pinto, G. and Bhattacharya, D. (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 13, 1827-1838.

    CAS  PubMed  Google Scholar 

  • Collins, F.S., Morgan, M. and Patrinos, A. (2003) The Human Genome Project: lessons from large-scale biology. Science 300, 286-290.

    CAS  PubMed  Google Scholar 

  • Coppin, A., Varre, J.S., Lienard, L., Dauvillee, D., Guerardel, Y., Soyer-Gobillard, M.O., Buleon, A., Ball, S. and Tomavo, S. (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60, 257-267.

    CAS  PubMed  Google Scholar 

  • Deluca, P. and Taddei, R. (1976) On the necessity of a systematic revision of the thermal acidophilic alga Cyanidium caldarium Tilden Geitler. Webbia 30, 197-218.

    Google Scholar 

  • Doemel, W.N. and Brock, T.D. (1970) The upper temperature limit of Cyanidium caldarium. Arch Mikrobiol 72, 326-332.

    CAS  PubMed  Google Scholar 

  • Douglas, S., Zauner, S., Fraunholz, M., Beaton, M., Penny, S., Deng, L.T., Wu, X., Reith, M., Cavalier-Smith, T. and Maier, U.G. (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091-1096.

    CAS  PubMed  Google Scholar 

  • Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M. et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512.

    CAS  PubMed  Google Scholar 

  • Fraser, C.M. and Fleischmann, R.D. (1997) Strategies for whole microbial genome sequencing and analysis. Electrophoresis 18, 1207-1216.

    CAS  PubMed  Google Scholar 

  • Fraser, C.M., Eisen, J.A. and Salzberg, S.L. (2000) Microbial genome sequencing. Nature 406, 799-803.

    CAS  PubMed  Google Scholar 

  • Gilson, P.R. and McFadden, G.I. (1997) Good things in small packages: the tiny genomes of chlo-rarachniophyte endosymbionts. Bioessays 19, 167-173.

    CAS  PubMed  Google Scholar 

  • Gilson, P.R. and McFadden, G.I. (2002) Jam packed genomes-a preliminary, comparative analysis of nucleomorphs. Genetica 115, 13-28.

    CAS  PubMed  Google Scholar 

  • Gilson, P.R., Maier, U.G. and McFadden, G.I. (1997) Size isn’t everything: lessons in genetic minia-turisation from nucleomorphs. Curr Opin Genet Dev 7, 800-806.

    CAS  PubMed  Google Scholar 

  • Glöckner, G., Rosenthal, A. and Valentin, K. (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51, 382-390.

    PubMed  Google Scholar 

  • Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M. et al. (1996) Life with 6000 genes. Science 274, 546, 563-547.

    Google Scholar 

  • Green, E.D. (2001) Strategies for the systematic sequencing of complex genomes. Nat Rev Genet 2, 573-583.

    CAS  PubMed  Google Scholar 

  • Gross, W. (1999) Revision of comparative traits for the acido- and thermophilic red algae Cyanidium and Galdieria. In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments, Kluwer, Dordrecht. pp. 437-446.

    Google Scholar 

  • Gross, W. and Gross, S. (2001) Physiological characterization of the red alga Galdieria sulphuraria iso-lated from a highly acidic mining area. Nova Hedwigia 123, 523-530.

    Google Scholar 

  • Gross, W., Heilmann, I., Lenze, D. and Schnarrenberger, C. (2001) Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. Eur J Phycol 36, 275-280.

    Google Scholar 

  • Gross, W., Oesterhelt, C., Tischendorf, G. and Lederer, F. (2002) Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). Eur J Phycol 37, 477-482.

    Google Scholar 

  • Hoffmann, L. (1994) Cyanidium-like algae from caves. In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells, Kluwer Academic Publishers, Dordrecht. pp. 175-182.

    Google Scholar 

  • Keeling, P.J. and Palmer, J.D. (2001) Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc Natl Acad Sci U S A 98, 10745-10750.

    CAS  PubMed  Google Scholar 

  • Kharchenko, P., Vitkup, D. and Church, G.M. (2004) Filling gaps in a metabolic network using expression information. Bioinformatics 20 Suppl 1, I178-I185.

    CAS  PubMed  Google Scholar 

  • Kharchenko, P., Chen, L., Freund, Y., Vitkup, D. and Church G.M. (2006) Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics 7, 177.

    PubMed  Google Scholar 

  • Korf, I. (2004) Gene finding in novel genomes. BMC Bioinformatics 5, 59.

    PubMed  Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921.

    CAS  PubMed  Google Scholar 

  • Liolios, K., Tavernarakis, N., Hugenholtz, P. and Kyrpides, N.C. (2006) The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res 34, D332-D334.

    CAS  PubMed  Google Scholar 

  • Lukashin, A.V. and Borodovsky, M. (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26, 1107-1115.

    CAS  PubMed  Google Scholar 

  • Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376-380.

    CAS  PubMed  Google Scholar 

  • Marquardt, J., Wans, S., Rhiel, E., Randolf, A. and Krumbein, W.E. (2000) Intron-exon structure and gene copy number of a gene encoding for a membrane-intrinsic light-harvesting polypeptide of the red alga Galdieria sulphuraria. Gene 255, 257-265.

    CAS  PubMed  Google Scholar 

  • Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M. and Kowallik, K.V. (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162-165.

    CAS  PubMed  Google Scholar 

  • Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M. and Penny, D. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99, 12246-12251.

    CAS  PubMed  Google Scholar 

  • Mathe, C., Sagot, M.F., Schiex, T. and Rouze, P. (2002) Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 30, 4103-4117.

    CAS  PubMed  Google Scholar 

  • Matsuzaki, M., Misumi, O., Shin, I.T., Maruyama, S., Takahara, M., Miyagishima, S.Y., Mori, T., Nishida, K., Yagisawa, F., Yoshida, Y. et al. (2004) Genome sequence of the ultrasmall unicellu-lar red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657.

    CAS  PubMed  Google Scholar 

  • McFadden, G.I. (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2, 513-519.

    CAS  PubMed  Google Scholar 

  • McFadden, G.I., Gilson, P.R., Douglas, S.E., Cavalier-Smith, T., Hofmann, C.J. and Maier, U.G. (1997) Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends Genet 13, 46-49.

    CAS  PubMed  Google Scholar 

  • Merola, A., Castaldo, R., De Luca, P., Gambardella, R., Musachio, A. and Taddei, R. (1981) Revision of Cyanidium caldarium. Three species of acidophylic algae. Giorn Bot Ital 115, 189-195.

    Google Scholar 

  • Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T. and Tanaka, K. (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45, 667-671.

    CAS  PubMed  Google Scholar 

  • Minoda, A., Nagasawa, K., Hanaoka, M., Horiuchi, M., Takahashi, H. and Tanaka, K. (2005) Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon mero-lae. Plant Mol Biol 59, 375-385.

    CAS  PubMed  Google Scholar 

  • Misumi, O., Matsuzaki, M., Nozaki, H., Miyagishima, S.Y., Mori, T., Nishida, K., Yagisawa, F., Yoshida, Y., Kuroiwa, H. and Kuroiwa, T. (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137, 567-585.

    CAS  PubMed  Google Scholar 

  • Moreira, D., Lopezarchilla, A.I., Amils, R. and Marin, I. (1994) Characterization of 2 new ther-moacidophilic microalgae - Genome organization and comparison with Galdieria sulphuraria. FEMS Microbiol Lett 122, 109-114.

    CAS  Google Scholar 

  • Muravenko, O.V., Selyakh, I.O., Kononenko, N.V. and Stadnichuk, I.N. (2001) Chromosome numbers and nuclear DNA contents in the red microalgae Cyanidium caldarium and three Galdieria species. Eur J Phycol 36, 227-232.

    Google Scholar 

  • Nagasaka, S., Nishizawa, N.K., Mori, S. and Yoshimura, E.Y. (2004) Metal metabolism in the red alga Cyanidium caldarium and its relationship to metal tolerance. Biometals 17, 177-181.

    CAS  PubMed  Google Scholar 

  • Nagashima, H., Matsumoto, G.I. and Fukuda, I. (1986) Hydrocarbons and fatty-Acids in 2 strains of the hot-spring alga Cyanidium caldarium. Phytochemistry 25, 2339-2341.

    CAS  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J. et al. (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97, 12176-12181.

    CAS  PubMed  Google Scholar 

  • O’Brien, S.J., Menotti-Raymond, M., Murphy, W.J., Nash, W.G., Wienberg, J., Stanyon, R., Copeland, N.G., Jenkins, N.A., Womack, J.E. and Marshall Graves, J.A. (1999) The promise of comparative genomics in mammals. Science 286, 458-462, 479-481.

    PubMed  Google Scholar 

  • Ohta, N., Sato, N. and Kuroiwa, T. (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res 26, 5190-5298.

    CAS  PubMed  Google Scholar 

  • Ohta, N., Matsuzaki, M., Misumi, O., Miyagishima, S.Y., Nozaki, H., Tanaka, K., Shin, I.T., Kohara, Y. and Kuroiwa, T. (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10, 67-77.

    CAS  PubMed  Google Scholar 

  • Osterman, A. and Overbeek, R. (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol 7, 238-251.

    CAS  PubMed  Google Scholar 

  • Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D. and Maltsev, N. (1999) The use of gene clus-ters to infer functional coupling. Proc Natl Acad Sci U S A 96, 2896-2901.

    CAS  PubMed  Google Scholar 

  • Palmer, J.D. (2000) A single birth of all plastids? Nature 405, 32-33.

    CAS  PubMed  Google Scholar 

  • Palmer, J.D. (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39, 4-11.

    CAS  Google Scholar 

  • Patron, N.J. and Keeling, P.J. (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41, 1131-1141.

    CAS  Google Scholar 

  • Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D. and Yeates, T.O. (1999) Assigning pro-tein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96, 4285-4288.

    CAS  PubMed  Google Scholar 

  • Poinar, H.N., Schwarz, C., Qi J., Shapiro, B., Macphee, R.D., Buigues, B., Tikhonov, A., Huson, D.H., Tomsho, L.P., Auch, A. et al. (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392-394.

    CAS  PubMed  Google Scholar 

  • Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y. et al. (2002) The genome sequence and structure of rice chromosome 1. Nature 420, 312-316.

    CAS  PubMed  Google Scholar 

  • Sato, T., Yamanishi, Y., Kanehisa, M. and Toh, H. (2005) The inference of protein-protein interac-tions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21, 3482-3489.

    CAS  PubMed  Google Scholar 

  • Seckbach, J. (1991) Systematic problems with Cyanidium caldarium and Galdieria sulphuraria and their implications for molecular-biology studies. J Phycol 27, 794-796.

    Google Scholar 

  • Seckbach, J. and Libby, W.F. (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures. Space Life Sci 2, 121-143.

    CAS  PubMed  Google Scholar 

  • Seckbach, J., Baker, F.A. and Shugarman, P.M. (1970) Algae thrive under pure CO2. Nature 227, 744-745.

    CAS  PubMed  Google Scholar 

  • Shendure, J., Mitra, R.D., Varma, C. and Church, G.M. (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5, 335-344.

    CAS  PubMed  Google Scholar 

  • Shendure, J., Porreca G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M., Wang, M.D., Zhang, K., Mitra, R.D. and Church, G.M. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728-1732.

    CAS  PubMed  Google Scholar 

  • Sterky, F. and Lundeberg, J. (2000) Sequence analysis of genes and genomes. J Biotechnol 76, 1-31.

    CAS  PubMed  Google Scholar 

  • Stiller, J.W. and Hall, B.D. (1997) The origin of red algae: Implications for plastid evolution. Proc Natl Acad Sci U S A 94, 4520-4525.

    CAS  PubMed  Google Scholar 

  • Stiller, J.W. and Hall, D.B. (1998) Sequences of the largest subunit of RNA polymerase II from two red algae and their implications for rhodophyte evolution. J Phycol 34, 857-864.

    CAS  Google Scholar 

  • Stiller, J.W. and Hall, B.D. (2002) Evolution of the RNA polymerase IIC-terminal domain. Proc Natl Acad Sci U S A 99, 6091-6096.

    CAS  PubMed  Google Scholar 

  • Stiller, J.W., Riley, J. and Hall, B.D. (2001) Are red algae plants? A critical evaluation of three key molecular data sets. J Mol Evol 52, 527-539.

    CAS  PubMed  Google Scholar 

  • Stiller, J.W., Reel, D.C. and Johnson, J.C. (2003) A single origin of plastids revisited: Convergent evo-lution in organellar genome content. J Phycol 39, 95-105.

    CAS  Google Scholar 

  • TAGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408,796-815.

    Google Scholar 

  • Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S. and Banfield, J.F. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37-43.

    CAS  PubMed  Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A. et al. (2001) The sequence of the human genome. Science 291, 1304-1351.

    CAS  PubMed  Google Scholar 

  • Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W. et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66-74.

    CAS  PubMed  Google Scholar 

  • Vitkup, D. (2004) Biological networks: from physical principles to biological insights. Genome Biol 5, 313.

    PubMed  Google Scholar 

  • Waterston, R.H., Lander, E.S. and Sulston, J.E. (2002a) On the sequencing of the human genome. Proc Natl Acad Sci U S A 99, 3712-3716.

    CAS  PubMed  Google Scholar 

  • Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P. et al. (2002b) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562.

    CAS  PubMed  Google Scholar 

  • Weber, A.P.M., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L.A., Krassovskaya, I., Linka, N., Truchina, J., Schneidereit, J., Voll, H. et al. (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 55, 17-32.

    CAS  PubMed  Google Scholar 

  • Weber, A.P.M., Linka, M. and Bhattacharya, D. (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5, 609-612.

    CAS  PubMed  Google Scholar 

  • Wei, L.P., Liu, Y.Y., Dubchak, I., Shon, J. and Park, J. (2002) Comparative genomics approaches to study organism similarities and differences. J Biomed Inform 35, 142-150.

    CAS  PubMed  Google Scholar 

  • Wendl, M.C., Marra, M.A., Hillier, L.W., Chinwalla, A.T., Wilson, R.K. and Waterston, R.H. (2001) Theories and applications for sequencing randomly selected clones. Genome Res 11, 274-280.

    CAS  PubMed  Google Scholar 

  • Yamada, T., Kanehisa, M. and Goto, S. (2006) Extraction of phylogenetic network modules from the metabolic network. BMC Bioinformatics 7, 130.

    CAS  PubMed  Google Scholar 

  • Yoon, H.S., Hackett, J.D., Pinto, G. and Bhattacharya, D. (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99, 15507-15512.

    CAS  PubMed  Google Scholar 

  • Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G. and Bhattacharya, D. (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21, 809-818.

    CAS  PubMed  Google Scholar 

  • Yoon, H.S., Muller, K.M., Sheath, R.G., Ott, F.D. and Bhattacharya, D. (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42,482-492.

    CAS  Google Scholar 

  • Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Weber, A.P.M., Barbier, G.G., Shrestha, R.P., Horst, R.J., Minoda, A., Oesterhelt, C. (2007). A Genomics Approach to Understanding the Biology of Thermo-Acidophilic Red Algae. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_27

Download citation

Publish with us

Policies and ethics