Skip to main content

Cryoseston inhabits one of the most extreme environments in the Earth biosphere. The phototrophic components are composed exclusively from microorganisms, adapted to life conditions of melting snow. All species occurring in cryosestic assemblages evidently colonised the snowfields secondarily, their ancestors originating from other habitats.

Cryosestic communities develop in snowfields and on the surface of glaciers, where the temperature surpasses 0ºC periodically (daily, or over variously long time periods), and the snow changes locally from solid to liquid state. It means, that the temperature adaptability of cryosestic species must allow to start the intense metabolic activities immediately after melting their cells accommodated in snow. Such adaptation also occurs in algae from other biotopes (in subaerophytic, endolithic and terrestrial habitats), but it is the conditio sine qua non in typical cryosestic algae. Another precondition is that the cryosestic microflora can develop only in snowfields and glaciers remaining and persisting in air temperatures above 0ºC over some periods, and under convenient irradiance conditions (cf. Hoham and Duval, 2001). This situation occurs mainly in mountains and polar and subpolar regions over the spring and summer periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreoli, C., Lokhorst, G.M., Mani, A.M., Scarabel, L., Moro, I., La Rocca, N. and Tognetto, L. (1998) Koliella antarctica sp. nov. (Klebsormidiales) a new marine green microalga from the Ross Sea (Antarctica), Arch. Hydrobiol./Algolog. Stud. 90, 1-8.

    Google Scholar 

  • Bidigare, R.R., Ondrusek, M.E., Iturriaga, R., Harvey, H.R., Hoham, R.W. and Macko, S.A. (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae, J. Phycol. 29, 427-434.

    Article  CAS  Google Scholar 

  • Bischof, K., Hanelt, D., Aguilera, J., Karsten, U., Vögele, B., Sawall, T. and Wiencke, C. (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. I. Sensitivity of photosynthesis to ultraviolet radiation, Mar. Biol. 140, 1097-1106.

    Article  CAS  Google Scholar 

  • Blumthaler, M., Ambach, W. and Rehwald, W. (1992) Solar UV-A and UV-B radiation fluxes at two alpine stations at different altitudes, Theor. Appl. Climatol. 46, 39-44.

    Article  Google Scholar 

  • Blumthaler, M., Webb, A.R., Seckmeyer, G., Bais, A.F., Huber, M. and Mayer, B. (1994) Simultaneous spectroradiometry: a study of solar UV irradiance at two altitudes, Geophys. Res. Lett. 21, 2805-2808.

    Article  Google Scholar 

  • Bolsenga, S.J. (1983) Spectral reflectances of snow and fresh-water ice from 340 through 1100 nm, J. Glaciol. 29, 296-304.

    Google Scholar 

  • Curl, H., Hardy, J.T. and Ellermeier, R. (1972) Spectral absorption of solar radiation in alpine snow-fields, Ecology 53, 1189-1194.

    Article  Google Scholar 

  • Döhler, G. (1988) Effect of UV-B (280-320 nm)radiation on the 15N-nitrate assimilation of some algae, Plant Physiol. (Life Sci. Adv.) 7, 79-84.

    Google Scholar 

  • Döhler, G. (1994) UV-effects on the nitrogen metabolism of marine phytoplankton and adaptation to UV radiation. In: R.H. Biggs and M.E.B. Joyner (eds.) Stratospheric ozone depletion/UV-B radi-ation in the biosphere, Springer-Verlag, Berlin, pp. 163-174.

    Google Scholar 

  • Droop, M.R. (1955) Carotenogenesis in Haematococcus pluvialis, Nature 175, 42.

    Article  CAS  Google Scholar 

  • Duval, B. and Hoham, R.W. (2000) Snow algae in the northeastern U.S.: photomicrographs, obser-vations and distribution of Chloromonas spp. (Chlorophyta), Rhodora 102, 365-372.

    Google Scholar 

  • Duval, B., Duval, E. and Hoham, R.W. (1999a) Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco, Int. Microbiol. 2, 39-42.

    CAS  Google Scholar 

  • Duval, B., Shetty K. and Thomas, W.H. (1999b) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light, J. Appl. Phycol. 11, 559-566.

    Article  CAS  Google Scholar 

  • Elster, J. (1999) Algal versatility in various extreme environments. In: J. Seckbach (ed.) Enigmatic microorganisms and life in extreme environments, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Falkowski, P.G. and La Roche, J. (1991) Acclimation to spectral irradiance in algae, J. Phycol. 27, 8-14.

    Article  Google Scholar 

  • Fogg, G.E. (1967) Observations of the snow algae of the South Orkney Islands, Philos. Trans. R. Soc. Lond. B252, 279-287.

    Article  Google Scholar 

  • Foti, M., Piatelli, M., Amico, V. and Ruberto, G. (1994) Antioxidant activity of phenolic meroditer-penoids from marine algae, J. Photochem. Photobiol. 26, 159-164.

    Article  CAS  Google Scholar 

  • Fukushima, H. (1963) Studies on cryophytes in Japan, J. Yokohama Munic. Univ., Ser. C, Nat. Sci. 43,1-146.

    Google Scholar 

  • Goodwin T.W. (ed.) (1980) The biochemistry of carotenoids. I. Plants. Chapman and Hall, New York.

    Google Scholar 

  • Gorton, H.L. and Vogelman, T.C. (2003) Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille, Photochem. Photobiol. 77, 608-615.

    Article  CAS  PubMed  Google Scholar 

  • Gorton, H.L., Williams, W.E. and Vogelman, T.C. (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille, Photochem. Photobiol. 73, 611-620.

    Article  CAS  PubMed  Google Scholar 

  • Heber, U., Bilger, W., Bligny, R. and Lange O.L. (2000) Phototolerance of lichen, mosses and higher plants in an alpine environment: analysis of photoreactions, Planta 211, 770-780.

    Article  CAS  PubMed  Google Scholar 

  • Hindák, F. and Komárek, J. (1968) Cultivation of the cryosestonic alga Koliella tatrae (Kol) Hind., Biol. Plant. 10, 95-97.

    Article  Google Scholar 

  • Hoham, R.W. (1973) Pleiomorphism in the snow alga Raphidonema nivale Lagerh. (Chlorophyta), and a revision of the genus Raphidonema Lagerh., Syesis 6, 255-263.

    Google Scholar 

  • Hoham, R.W. (1974a) New findings in the life history of the snow alga Chlainomonas rubra (Stein et Brooke) comb. nov. (Chlorophyta, Volvocales), Syesis 7, 239-247.

    Google Scholar 

  • Hoham, R.W. (1974b) Chlainomonas kolii (Hardy et Curl) comb. nov. (Chlorophyta, Volvocales), a revision of the snow alga, Trachelomonas kolii Hardy et Curl (Euglenophyta, Euglenales), J. Phycol. 10, 392-396.

    Google Scholar 

  • Hoham, R.W. (1975a) The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales), Phycologia 14, 213-226.

    Google Scholar 

  • Hoham, R.W. (1975b) Optimum temperatures and temperature ranges for growth of snow algae, Arctic Alpine Res. 7, 13-24.

    Article  Google Scholar 

  • Hoham, R.W. (1976) The effect of coniferous litter and different snow meltwaters upon the growth of two species of snow algae in axenic culture, Arctic Alpine Res. 8, 377-386.

    Article  Google Scholar 

  • Hoham, R.W. (1992) Environmental influences on snow algal microbes. In: B. Shafer(ed.) Proceedings of the 60th Annual Western SnowConference, pp. 78-83.

    Google Scholar 

  • Hoham, R.W., Berman, J.D., Rogers, H.S., Felio, J.H., Ryba, J.B. and Miller, P.R. (2006) Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp nov and Chloromonas tughillensis sp nov (Volvocales, Chlorophyceae) and the effects of light on their life cycle development, Phycologia 45, 319-330.

    Google Scholar 

  • Hoham, R.W. and Blinn, D.W. (1979) Distributionof cryophilic algae in an arid region, the American Southwest, Phycologia 18, 133-145.

    Google Scholar 

  • Hoham, R.W., Bonome, T.A., Martin, C.W. and Leebens-Mack, J.H. (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats, J. Phycol. 38, 1051-1064.

    Article  CAS  Google Scholar 

  • Hoham, R.W. and Duval, B. (2001) Microbial ecology of snow and freshwater ice, In: H.G. Jones, J.W. Pomeroy, D.A. Walker and R.W. Hoham (eds.) Snow ecology: An interdisciplinary examination of snow-covered ecosystems, Cambridge University Press, Cambridge, pp. 168-228.

    Google Scholar 

  • Hoham, R.W., Laursen, A.E., Clive, S.O. and Duval, B. (1993) Snow algae and other microbes in sev-eral Alpine areas in New England, In: M. Ferrick (ed.) Proceedings of the 50th Annual Eastern Snow Conference, pp. 165-173.

    Google Scholar 

  • Hoham, R.W, Marcarelli, A.M., Rogers, H.S., Ragan, M.D., Petre, B.M., Ungerer, M.D., Barnes, J.M. and Francis, D.O. (2000) The importance of light and photoperiod in sexual reproduction and geographical distribution in the green snow alga, Chloromonas sp.-D (Chlorophyceae, Volvocales), Hydrol. Processes 14, 3309-3321.

    Google Scholar 

  • Hoham, R.W. and Mullet, J.E. (1977) The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales), Phycologia 16, 53-68.

    Google Scholar 

  • Hoham, R.W. and Mullet, J.E. (1978) Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella, Phycologia 17, 106-107.

    Google Scholar 

  • Hoham, R.W., Mullet, J.E. and Roemer, S.C. (1983) The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales), Can. J. Bot. 61, 2416-2428.

    Article  Google Scholar 

  • Hoham, R.W., Roemer, S.C. and Mullet, J.E. (1979) The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales), Phycologia 18, 55-70.

    Google Scholar 

  • Hoham, R.W., Schlag, E.M., Kang, J.Y., Hasselwander, A.J., Behrstock, A.F., Blackburn, I.R., Johnson, R.C. and Roemer, S.C. (1998) The effects of irradiance levels and spectral composition on mating strategies in the snow alga, Chloromonas sp.-D., from the Tughill Plateau, New York State, Hydrol. Processes 12, 1627-1639.

    Google Scholar 

  • Hoham, R.W., Yatsko, C.P., Germain, L. and Jones, H.G. (1989) Recent discoveries of snow algae in upstate New York and Quebec Province and preliminary reports on snow chemistry. In: J. Lewis (ed.) Proceedings of the 46th Annual Eastern Snow Conference, pp. 196-200.

    Google Scholar 

  • , P. (1973) A field method for measuring the photosynthesis of snow and aerophytic algae, Arch. Hydrobiol./Algolog. Stud. 8, 363-371.

    Google Scholar 

  • , P. and Hindák, F. (1970) Cryptomonasfrigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the HighTatras, Biologia 25, 241-250.

    Google Scholar 

  • Johannessen, M. and Henriksen, A. (1978) Chemistry of snow meltwater: changes in concentration during melting, Water Resources Res. 14, 615-619.

    Article  CAS  Google Scholar 

  • Jones, H.G. (1987) Chemical dynamics of snow cover and snowmelt in a boreal forest. In: H.G. Jones and W.J. Orville-Thomas (eds.) NATO ASI Series C Mathemat. Phys. Sci., Vol. 211, Seasonal snowcovers physics, chemistry, hydrology, Reidel, Dordrecht, pp. 531-574.

    Google Scholar 

  • Jones, H.G. (1991) Snow chemistry and biological activity: a particular perspective on nutrient cycling, In: T.D. Davies (ed.) Seasonal snowpacks, NATO ASI Series, Vol. G28, Springer-Verlag, Berlin, pp. 173-228.

    Google Scholar 

  • Jones, H.G. (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold, Hydrol. Processes 13, 2135-2147.

    Article  Google Scholar 

  • Karsten, U., Franklin, L.A., Luning, K. and Wiencke, C. (1998) Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta), Planta 205, 257-262.

    Article  CAS  Google Scholar 

  • Kawecka, B. and Drake, B. (1978) Biology and ecology of snow algae. 1. The sexual reproduction of Chlamydomonas nivalis (Bauer) Wille (Chlorophyta, Volvocales), Acta Hydrobiol. 20, 111-116.

    Google Scholar 

  • Kociánová, M.,Sˇtursová, H.,Sˇtursa, J., Vaneˇk, J. and Vávra, V. (1989) Nové nálezy cˇerveného sneˇhu v Krkonoších [New sites with red snow in Giant Mountains], Opera Corcontica 26, 151-158.

    Google Scholar 

  • Kol, E. (1968) Kryobiologie, In: H.J. Elster and W. Ohle (eds.) Die Binnengewässer 24 Schweizerbart. Verlagsbuchh., Stuttgart, 216 pp.

    Google Scholar 

  • Komárek, J., Hindák, F. and Javornicky, P. (1973) Ecology of the green kryophilic algae from Belanské Tatry Mountains (Czechoslovakia), Arch. Hydrobiol./Algolog. Stud. 9, 427-449.

    Google Scholar 

  • Komárek, J. and Ruºzˇicˇka, J. (1969) Effect of temperature on the growth of Scenedesmus quadricauda (Turp.) Bréb. In: B. Fott (ed.) Studies in Phycology, Academia, Praha, pp. 262-292.

    Google Scholar 

  • Komárek, O. and Komárek, J. (1999) Diversity of freshwater and terrestrial habitats and their oxyphototroph microflora in the Arctowski Station region, South Shetlands Islands, Polish Polar Res. 20, 259-282.

    Google Scholar 

  • Komárek, O. and Komárek, J. (2001) Contribution to the taxonomy and ecology of green cryosestic algae in the summer season 1995-1996 at King George Island, S. Shetland Islands, Nova Hedwigia, Beih. 123, 121-140. In: J. Elster et al. (eds.) Proceedings of the International conference ˇ, Czech Republic.

    Google Scholar 

  • Kuhn, M. (2001) The nutrient cycle through snow and ice, a review, Aquat. Sci. 63, 150-167.

    Article  CAS  Google Scholar 

  • Ling, H.U. (1996) Snow algae of the Windmill Islands region, Antarctica, Hydrobiologia 336, 99-106.

    Google Scholar 

  • Ling, H.U. (2001) Snow algae of the Windmill Islands, continental Antarctica: Desmotetra aureo-spora, sp. nov. and D. antarctica, comb. nov., J. Phycol. 37, 160-174.

    Article  Google Scholar 

  • Ling, H.U. (2002) Snow algae of the Windmill Islands, continental Antarctica Chlorosarcina antarc-tica comb. nov. (Chlorophyceae, Chlorophyta) from pink snow, with discussion of Chlorosarcina and allied genera, Phycologia 41, 1-9.

    Article  Google Scholar 

  • Ling, H.U. and Seppelt, R.D. (1993) Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow, Eur. J. Phycol. 28,77-84.

    Article  Google Scholar 

  • Ling, H.U. and Seppelt, R.D. (1998) Snow algae of the Widmill Island, continental Antarctica. 3. Chloromonas polyptera (Volvocales, Chlorophyta), Polar Biol. 20, 320-324.

    Google Scholar 

  • , J.(1993) First record of cryosestonin the Bohemian Forest Mts. (Sˇumava), Arch. Hydrobiol./Algolog. Stud. 69, 83-89.

    Google Scholar 

  • MacIntyre, H.L., Kana, T.M., Anning, T. and Geider, R.J. (2002) Photoacclimation of photosynthe-sis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria, J. Phycol. 38, 17-38.

    Article  Google Scholar 

  • Margesin, R. and Schinner, F. 1994 Properties ofcold-adapted microorganisms and their potential role in biotechnology, J. Biotech. 33, 1-14.

    Article  CAS  Google Scholar 

  • Marshall, W.A. and Chalmers, M.O. (1997) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria, Ecography 20, 585-594.

    Article  Google Scholar 

  • Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L.G. and Huner, N.P.A. (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environ-ments, Microbiol. Mol. Biol. Rev. 70, 222-252.

    Article  CAS  PubMed  Google Scholar 

  • Müller, T., Bleiss, W., Martin, C.D., Rogaschewski, S. and Fuhr, G. (1998) Snow algae from north-west Svalbard their identification, distribution, pigment and nutrient content, Polar Biol. 20, 14-32.

    Article  Google Scholar 

  • Müller, T., Leya, T. and Fuhr, G. (2001) Persistent snow algal fields in Spitsbergen: field observation and a hypothesis about the annual cell circulation, Arctic Alpine Res. 33, 42-51.

    Article  Google Scholar 

  • Newton, A.P.W. (1982) Red-colored snow algae in Svalbard - some environmental factors determin-ing the distribution Chlamydomonas nivalis (Chlorophyta, Volvocales), Polar Biol. 1, 167-172.

    Article  Google Scholar 

  • Novis, P.M. (2002a) New records of snow algae for New Zealand, from Mt Philistine, Arthur’s Pass National Park, New Zealand J. Bot. 40, 297-312.

    Google Scholar 

  • Novis, P.M. (2002b) Ecology of the snow alga Chlainomonas kolii(Chlamydomonadales, Chlorophyta) in New Zealand, Phycologia 41, 280-292.

    Google Scholar 

  • Ohtani, S., Bo, C. and Nakatsubo, T. (1998) Distribution of snow algae at King George Island, Antarctica, with reference to physical and chemical characters of snow, Chinese J. Polar Res. 10, 191-203.

    CAS  Google Scholar 

  • Painter, T.H., Duval, B., Thomas, W.H., Mendez, M., Heintzelman, S. and Dozier, J. (2001) Detection and quantification of snow algae with an airborne imaging spectrometer, Appl. Environ. Microbiol. 67, 5267-5272.

    Article  CAS  PubMed  Google Scholar 

  • Remias, D., Lütz-Meindl, U. and Lütz, C. (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis, Eur. J. Phycol. 40, 259-268.

    Article  CAS  Google Scholar 

  • Rˇezanka, T., Nedbalová, L. and Sigler, K. (2007) Unusual short and medium chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina, Microbiol. Res., doi: 10.1016/j.micres. 2006.11.021.

    Google Scholar 

  • Roser, D.J., Melick, D.R., Ling, H.U. and Seppelt, R.D. (1992) Polyol and sugar content of the terrestrial plants from continental Antarctica, Antarct. Sci. 4, 413-420.

    Google Scholar 

  • Roser, D.J., Melick, D.R., Ling, H.U. and Seppelt, R.D. (1992) Polyol and sugar content of the ter-restrial plants from continental Antarctica, Antarct. Sci. 4, 413-420.

    Google Scholar 

  • Ru°zˇicˇka, J. (1971) Morphologische Variabilität der Algen, hervorgerufen durch Kultivierungsbedingugnen, Arch. Hydrobiol./Algolog. Stud. 4, 146-177.

    Google Scholar 

  • Sommaruga, R. and Garcia-Pichel, F. (1999) UV-absorbing mycosporine-like compounds in planc-tonic and benthic organisms from a high mountain lake, Arch. Hydrobiol. 144, 255-269.

    CAS  Google Scholar 

  • Stein, J. (1963) A Chromulina (Chrysophyceae) from snow, Can. J. Bot. 41, 1367-1370.

    Article  CAS  Google Scholar 

  • Stibal, M. (2003) Ecological and physiological characteristics of snow algae from Czech and Slovak mountains, Czech Phycol. 3, 141-152.

    Google Scholar 

  • Stibal, M. and Elster, J. (2005) Growth and morphology variation as a response to changing environ-mental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil, Polar Biol. 28, 558-567.

    Article  Google Scholar 

  • Sutton, F.A. (1972) The physiology and life histories of selected cryophytes of the Pacific NorthWest., Ph.D. Thesis, Oregon State University, Corvallis, 98 pp.

    Google Scholar 

  • Tearle, P.W. (1987) Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines, Soil Biol. Biochem. 19, 381-390.

    CAS  Google Scholar 

  • TerBraak, C.J.F. and Sˇmilauer, P. (1998) CANOCO Release 4. Reference manual and user’s guide to CANOCO for Windows: Software for Canonical Community Ordination. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Tinkler, J.H., Böhm, F., Schalch, W. and Truscott, T.G. (1994) Dietary carotenoids protect human cells from damage, J. Photochem. Photobiol. B: Biol. 26, 283-285.

    Article  CAS  Google Scholar 

  • Thomas, W.H. (1972) Observations on snow algae in California, J. Phycol. 8, 1-9.

    Google Scholar 

  • Tranter, M., Davies, T.D., Abrahams, P.W., Blackwood, I., Brimblecombe, P. and Vincent, C.E. (1987) Spatial variability in the chemical composition of snowcover in a small, remote Scottish catch-ment, Atmosph. Environ. 21, 853-862.

    Article  CAS  Google Scholar 

  • Vincent, W.F. and Roy, S. (1993) Solar ultraviolet-B radiation and aquatic primary production: dam-age, protection, and recovery, Environ. Rev. 1, 1-12.

    CAS  Google Scholar 

  • Williams, W.E., Gorton, H.L. and Vogelman, T.C. (2003) Surface gas-exchange processes of snow algae, Proc. Natl. Acad. Sci. U.S.A. 100, 562-566.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, F., Lederer, F., Lukavsky,, J. and Nedbal, L. (1996) Screening of freshwater alga (Chlorophyta, Chromophyta) for the ultraviolet-B sensitivity of the photosynthetic apparatus, J. Plant Physiol. 148,42-48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Komárek, J., Nedbalová, L. (2007). Green Cryosestic Algae. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_17

Download citation

Publish with us

Policies and ethics