Skip to main content

The Local Tumor Microenvironment

  • Chapter
General Principles of Tumor Immunotherapy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–72

    Article  PubMed  CAS  Google Scholar 

  2. Dworak HF (1986) Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–59

    Article  Google Scholar 

  3. Aller MA, Arias JL, Nava MP, Arias J (2004) Posttraumatic inflammation is a complex response based on the pathological expression of the nervous, immune and endocrine function systems. Exp Biol Med 229:170–81

    CAS  Google Scholar 

  4. Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumor growth. Eur J Cancer 39:1835–41

    Article  PubMed  CAS  Google Scholar 

  5. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virehow? Lancet 357 539–45

    Google Scholar 

  6. Mareel M, Leroy A (2003) Clinical cellular, and molecular aspects of cancer invasion. Physiol Rev 83:337–76

    PubMed  CAS  Google Scholar 

  7. Kornstein MJ, Brooks JS, Elder DE (1983) Immunoperoxidase localization of lymphocyte subsets in the host responses to melanoma and nevi. Cancer Res 43:2749–53

    PubMed  CAS  Google Scholar 

  8. Vacarello L, Kanbour A, Kanbour-Shakir A, Whiteside TL (1993) Tumor-infiltrating lymphocytes from ovarian tumors of low malignant potential. Int. J Gynecol Path 12:41–50

    Article  Google Scholar 

  9. Von Kleist S, Berling J, Bohle W, Wittekind C (1987) Immunohistochemical analysis of lymphocyte subpopulations infiltrating breast carcinomas and benign lesions. Int J Cancer 40: 18–23

    Article  Google Scholar 

  10. Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22:6524–36

    Article  PubMed  CAS  Google Scholar 

  11. Whiteside TL (1993) Tumor Infiltrating Lymphocytes in Human Malignancies, Medical Intelligence Unit, RG Landes Co, Austin, TX.

    Google Scholar 

  12. Letessier E, Sacchi M, Johnson JT, Herberman RB, Whiteside TL (1990) The absence of lymphoid suppressor cells in tumor-involved lymph nodes of patients with head and neck cancer. Cell Immunol 130:446–58

    Article  PubMed  CAS  Google Scholar 

  13. Tanaka H, Tanaka J, Kjaergaard J, Shu S (2002) Depletion of CD4+CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 25:207–17

    Article  PubMed  CAS  Google Scholar 

  14. Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL (2002) Signaling abnormalities and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 8:3137–45

    PubMed  Google Scholar 

  15. Fridman WH, Tartour E (1998) Macrophage – and lymphocyte produced Th1 and Th2 cytokines in the tumor microenvironment. Res Immunol 149:651–53

    Article  PubMed  CAS  Google Scholar 

  16. Whiteside TL, Campoli M, Ferrone S (2005) Tumor induced immune suppression and immune escape: mechanisms and possible solutions. In: Analyzing T Cell Responses. Nagorsen D, Manincola F (eds), Springer Publishers, pp. 43–82

    Google Scholar 

  17. Shevach EM (2004) Fatal attraction: tumors becon regulatory T cells. Nature Med 10:900–01

    Article  PubMed  CAS  Google Scholar 

  18. Barnes L (1996) Pathology of the head and neck: general considerations. In: Myers EN, Suen J-Y (eds) Cancer of the head and neck. WB Saunders Co., Philadelphia, PA, pp17–32

    Google Scholar 

  19. Chiba T, Ohtani H, Mizoi T, Naito Y, Sato E, Nagura H, Ohuchi A, Ohuchi K, Shiiba K, Kurokawa Y, Satomi S (2004) Intraepithelial CD8+ T-cell-count becomes a prognostic factor after a longer follow-up period in human colorectal carcinoma: possible association with suppression of micrometastasis. Br J Cancer 91:1711–17

    PubMed  CAS  Google Scholar 

  20. Mihm MC, Clemente C, Cascinelli N (1996) Tumor infiltrating lymphocytes in lymph node melanoma metastases–a histopathologic prognostic indicator and an expression of local immune response. Lab Invest 74:43–47

    PubMed  Google Scholar 

  21. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mamary tumors to malignancy. J Exp Med 193:727–40

    Article  PubMed  CAS  Google Scholar 

  22. Miescher S, Whiteside TL, Moretta L, Von Fliedner V (1987) Clonal and frequency analyses of tumor-infiltrating T lymphocytes from human solid tumors. J Immunol 138:4004–11

    PubMed  CAS  Google Scholar 

  23. Weidmann E, Whiteside TL, Giorda R, Herberman RB, Trucco M (1992) The T-cell receptor V beta gene usage in tumor-infiltrating lymphocytes and blood of patients with hepatocellular carcinoma. Cancer Res 52:5913–20

    PubMed  CAS  Google Scholar 

  24. Albers AE, Ferris RL, Kim GG, Chikamatsu K, DeLeo AB, Whiteside TL (2005) Immune response to p53 in patients with cancer: enrichment in tetramer+p53 peptide-specific T cells and regulatory T cells at tumor sites. Cancer Immunol Immunother 62:670–79

    Google Scholar 

  25. Albers AE, Tsukishiro T, Ferris RL, Whiteside TL, DeLeo AB (2006) T-cell receptor variable gene UPbeta-restricted T lymphocytes are sensitive to apoptosis in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 12:2394–2403

    Article  PubMed  CAS  Google Scholar 

  26. Weidmann E, Elder EM, Trucco M, Lotze MT, Whiteside TL (1993) Usage of T-cell receptor V beta chain genes in fresh and cultured tumor-infiltrating lymphocytes from human melanoma. Int J Cancer 54:383–90

    Article  PubMed  CAS  Google Scholar 

  27. Whiteside TL (1992) Tumor infiltrating lymphocytes as antitumor effector cells. Biotherapy 5:47–61

    Article  PubMed  CAS  Google Scholar 

  28. Whitford P, Mallon EA, George WD, Campbell AM (1990) Flow cytometric analysis of tumour infiltrating lymphocytes in breast cancer. Br J Cancer 62:971–75

    PubMed  CAS  Google Scholar 

  29. Baxevanis CN, Dedoussis GV, Papadopoulos NG, Missitzis I, Stathopoulos GP, Papamichail M (1994) Tumor specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer 74:1275–82

    Article  PubMed  CAS  Google Scholar 

  30. NaitoY, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–94

    Google Scholar 

  31. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, Shintaku I, Nagura H, Ohtani H (2001) Proliferative activity of intratumoral CD8+ T lymphocytes as a prognostic factor in human renal cell carcinoma: Clinicopathologic demonstration of antitumor immunity. Cancer Res 61:5132–36

    PubMed  CAS  Google Scholar 

  32. Sheu BC, Hsu SM, Ho HN, Lin RH, Torng PL, Huang SC (1999) Reversed CD4/CD8 percentages of tumor-infiltrating lymphocytes correlate with disease progression in human cervical cancer. Cancer 86:1537–43

    Article  PubMed  CAS  Google Scholar 

  33. Vitolo D, Kanbour A, Johnson JT, Herberman RB, Whiteside TL (1993) In situ hybridization for cytokine gene transcripts in the solid tumor microenvironment. Eur J Cancer 3:371–77

    Article  Google Scholar 

  34. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–61

    PubMed  CAS  Google Scholar 

  35. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late stage ovarian cancer. Cancer Res 61:4766–72

    PubMed  CAS  Google Scholar 

  36. Ramsdell F (2003) Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity 19:165–68

    Article  PubMed  CAS  Google Scholar 

  37. Shevach EM (2000) Regulatory T cells I Autoimmunity. Annu Rev Immunol 18:423–49

    Article  PubMed  CAS  Google Scholar 

  38. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, Straus D, Samelson LE, Thompson CB, Bluestone JA (1998) Molecular basis of T-cell inactivation by CTLA-4. Science 282:2263–66

    Article  PubMed  CAS  Google Scholar 

  39. Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, Carreno BM, Collins M, Shevach EM (2004) Engagement of glucocorticoid induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol 173:5008–20

    PubMed  CAS  Google Scholar 

  40. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med 10:942–49

    Article  PubMed  CAS  Google Scholar 

  41. Vlad G, Cortesini R, Suciu-Foca N (2005) License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J Immunol 174:5907–14

    PubMed  CAS  Google Scholar 

  42. Rabinowich H, Reichert EE, Kashii Y, Bell MC, Whiteside TL (1998) Lymphocyte apoptosis induced by Fas ligand-expressing ovarian carcinoma cells: implications for altered expression of TcR in tumor-associated lymphocytes. J Clin Invest 101:2579–88

    PubMed  CAS  Google Scholar 

  43. Reichert TE, Rabinowich H, Johnson JT, Whiteside TL (1998) Human immune cells in the tumor microenvironment: mechanisms responsible for signaling and functional defects. J Immunother 21:295–306

    Article  PubMed  CAS  Google Scholar 

  44. Li X, Liu J, Park JK, Hamilton TA, Rayman P, Klein E, Edinger M, Tubbs R, Bukowski R, Finke J (1994) T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res 54:5424–29

    PubMed  CAS  Google Scholar 

  45. Reichert TE, Day E, Wagner EM, Whiteside TL (1998) Absent of low expression of the UPzeta chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res 58:5344–47

    PubMed  CAS  Google Scholar 

  46. Uzzo RG, Rayman P, Kolenko V, Clark PE, Cathcart MK, Bloom T, Novick AC, Bukowski RM, Hamilton T, Finke JH (1999) Renal cell carcinoma-derived gangliosides suppress NFUPkappaB activation in T cells. J Clin Invest 104:769–76

    PubMed  CAS  Google Scholar 

  47. Ling W, Rayman P, Uzzo R, Clark P, Kim HJ, Tubbs R, Novick A, Bukowski R, Hamilton T, Finke J (1998) Impaired activation of NFUPkappaB in T cells from a subset of renal cell carcinoma patients is mediated by inhibition of phosphorylation and degradation of the inhibitor, IUPkappaBUPalpha. Blood 92:1334–41

    PubMed  CAS  Google Scholar 

  48. Uzzo RG, Clark PE, Rayman P, Bloom T, Rybicki L, Novick AC, Bukowski RM, Finke JH (1999) Alterations in NFUPkappaB activation in T lymphocytes of patients with renal cell carcinoma. J Nat Cancer Inst 91:718–721

    Article  PubMed  CAS  Google Scholar 

  49. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  PubMed  CAS  Google Scholar 

  50. May MJ, Ghosh S (1998) Signal transduction through NF-UPkappaB. Immunol Today 19:80–88

    Article  PubMed  CAS  Google Scholar 

  51. Kuss I, Saito T, Johnson JT, Whiteside TL (1999) Clinical significance of decreased UPzeta chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin Cancer Res 5:329–34

    PubMed  CAS  Google Scholar 

  52. Whiteside TL (2004) Down-regulation of UPzeta chain expression in T cells: A biomarker of prognosis in cancer? Cancer Immunol Immunother 53:865–76

    PubMed  CAS  Google Scholar 

  53. Al-Sarireh B, Eremin O (2000) Tumour-associated macrophages (TAMS): disordered function, immune suppression and progressive tumour growth. JR Coll Surg Edinb 45:1–16

    CAS  Google Scholar 

  54. Liu YJ (2001) Dendritic cell subsets and lineages and their functions in innate and adoptive immunity. Cell 106:259–62

    Article  PubMed  CAS  Google Scholar 

  55. Hansson M, Asea A, Ericsson U, Hermodsson S, Hellstrand K (1996) Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites. J Immunol 156:42–47

    PubMed  CAS  Google Scholar 

  56. Kiessling R, Kono K, Petersson M, Wasserman K (1996) Immunosuppression in human tumor-host interaction: role of cytokines and alterations in signal-transducing molecules. Springer Sem Immunopathol 18:227–42

    Article  CAS  Google Scholar 

  57. Malmberg KJ, Arulampalam V, Ichihara F, Petersson M, et al (2001) Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NK-kappaB activation. J Immunol 167:2595–2601

    PubMed  CAS  Google Scholar 

  58. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56: 4625–29

    PubMed  CAS  Google Scholar 

  59. Banchereau J, Briere F, Caux C, Davoust J, et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  60. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–52

    Article  PubMed  CAS  Google Scholar 

  61. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard K, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C, Lebecque S (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10:7466–74

    Article  PubMed  CAS  Google Scholar 

  62. Gabrilovich D (2004) Mechanisms and functional significance of tumor-induced dendritic cell defects. Nature Med 4:941–52

    CAS  Google Scholar 

  63. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–66

    PubMed  CAS  Google Scholar 

  64. Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT, Whiteside TL (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8:2553–2562

    PubMed  Google Scholar 

  65. Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN (1998) Minimal recruitment and activation of dendritic cells in within renal cell carcinoma. Clin Cancer Res 4:585–93

    PubMed  CAS  Google Scholar 

  66. Esche C, Shurin GV, Kirkwood JM, Wang GQ, Rabinowich H, Pirtskhalaishvili G, Shurin MR (2001) Tumor necrosis factor-alpha-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediated resistance of mature dendritic cells to melanoma-induced apoptosis. Clin Cancer Res 7:974s-79s

    PubMed  CAS  Google Scholar 

  67. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–90

    PubMed  CAS  Google Scholar 

  68. Esche C, Lokshin A, Shurin GV, Gastman BR, Rabinowich H, Watkins SC, Lotze MT, Shurin MR (1999) Tumor’s other immune targets: dendritic cells. J Leukocyte Biol 66:336–44

    PubMed  CAS  Google Scholar 

  69. Shurin MR, Esche C, Lokshin A, Lotze MT (1999) Apoptosis in dendritic cells. In: Dendritic Cells: Biology and Clinical Applications, Lotze MT, Thomson AW (eds), Academic Press, New York, pp.673–92

    Google Scholar 

  70. Shurin GV, Shurin MR, Bykovskaja S, Shogan J, Lotze MT, Barksdale EM Jr (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–69

    PubMed  CAS  Google Scholar 

  71. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell functions. Clin Cancer Res 5:2963–70

    PubMed  CAS  Google Scholar 

  72. Whiteside TL, Stanson J, Shurin MR, Ferrone S (2004) Antigen processing machinery (APM) in human dendritic cells: up-regulation by maturation and down-regulation by tumor cells. J Immunol 173:1526–34

    PubMed  CAS  Google Scholar 

  73. Tourkova IL, Shurin GV, Chatta GS, Perez L, Finke J, Whiteside TL, Ferrone S, Shurin MR (2005) Restoration by IL-15 of MHC class I antigen processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol In Press

    Google Scholar 

  74. Becker Y (1993) Dendritic cell activity against primary tumors: an overview. In Vivo 7: 187–91

    PubMed  CAS  Google Scholar 

  75. Reichert TE, Scheuer C, Day R, Wagner W, Whiteside TL (2001) The number of intratumoral dendritic cells and UPzeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 91:2136–47

    Article  PubMed  CAS  Google Scholar 

  76. Giannini A, Bianchi S, Messerini L, Gallo O, Gallina E, Asprella Libonati G, Olmi P, Zampi G (1991) Prognostic significance of accessory cells and lymphocytes in nasopharygeal carcinoma. Pathol Res Pract 187:496–502

    PubMed  CAS  Google Scholar 

  77. Goldman SA, Baker E, Weyant RJ, Clarke MR, Myers JN, Lotze MT (1998) Peritumoral CD1a-positive dendritic cells are associated with improved survival in patients with tongue carcinoma. Arch Otolaryngol Head Neck Surg 124:641–46

    PubMed  CAS  Google Scholar 

  78. Furukawa T, Watanabe S, Kodama T, Sato Y, Shimosato Y, Suemasu K (1985) T-zone histiocytes in adenocarcinoma of the lung in relation to postoperative prognosis. Cancer 56:2651–656

    Article  PubMed  CAS  Google Scholar 

  79. Lespagnard L, Gancberg D, Rouas G, Leclercq G, de Saint-Aubain Somerhausen N, Di Leo A, Piccart M, Verhest A, Larsimont D (1999) Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer 84:309–14

    Article  PubMed  CAS  Google Scholar 

  80. Tsujitani S, Furukawa T, Tamada R, Okamura T, Yasumoto K, Sugimachi K (1987) Langerhans cells and prognosis in patients with gastric carcinoma. Cancer 59:501–05

    Article  PubMed  CAS  Google Scholar 

  81. Tsujitani S, Kakeji Y, Watanabe A, Kohnoe S, Maehara Y, Sugimachi K (1990) Infiltration of dendritic cells in relation to tumor invasion and lymph node metastasis in human gastric cancer. Cancer 66:2012–16

    Article  PubMed  CAS  Google Scholar 

  82. Murphy GF, Radu A, Kaminer M, Berg D (1993) Autologous melanoma vaccine induces inflammatory responses in melanoma metastases: relevance to immunologic regression and immunotherapy. J Invest Dermatol 100:335S-341S

    Article  PubMed  CAS  Google Scholar 

  83. O’Brien PM, Tsirimonaki E, Coomber DW, Millan DW, Davis JA, Campo MS (2001) Immunoglobin genes expressed by B-lymphocytes infiltrating cervical carcinomas show evidence of antigen-driven selection. Cancer Immunol Immunother 50:523–32

    Article  PubMed  CAS  Google Scholar 

  84. Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S, Junghans RP (2001) Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res 61:7889–99

    PubMed  CAS  Google Scholar 

  85. Fisher ER, Kenny JP, Sass R, Dimitrov NV, Siderits RH, Fisher B (1990) Medullary cancer of the breast revisited. Breast Cancer Res Treat 16:215–29

    Article  PubMed  CAS  Google Scholar 

  86. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H, Hersh EM (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169:1829–1836

    PubMed  CAS  Google Scholar 

  87. Hansen MH, Nielsen HV, Ditzel HJ (2001) The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic tumor cells. PNAS 98:12659–64

    Article  PubMed  CAS  Google Scholar 

  88. Nzula S, Going JJ, Stott DI (2003) Antigen-driven clonal proliferation, somatic hypermutation and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res 63:3275–80

    PubMed  CAS  Google Scholar 

  89. Kotlan B, Simsa P, Foldi J, Fridman WH, Glassy M, McKnight M, Teillaud JL (2003) Immunoglobulin repertoire of B lymphocytes infiltrating breast medullary carcinoma. Hum Antibodies 12:113–21

    PubMed  CAS  Google Scholar 

  90. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–89

    PubMed  CAS  Google Scholar 

  91. Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996) Oxidative stress by tumor-derived macrophagessuppresses the expression of CD3 UPzeta chain of T-cell receptor complex and antigen-specific cell responses. PNAS 93:13119–24

    Article  PubMed  CAS  Google Scholar 

  92. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–60

    PubMed  CAS  Google Scholar 

  93. Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Cancer 91:469–75

    CAS  Google Scholar 

  94. Balkwill F, Coussens LM (2004) Cancer: An inflammatory link. Nature 431:405–06

    Article  PubMed  CAS  Google Scholar 

  95. Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–19

    Article  PubMed  CAS  Google Scholar 

  96. Matzinger P (1998) An innate sense of danger. Semin Immunol 10:399–415

    Article  PubMed  CAS  Google Scholar 

  97. Janeway CA, Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13:11–16

    Article  PubMed  CAS  Google Scholar 

  98. Whiteside TL, Vujanovic NL, Herberman RB (1998) Natural killer cells and tumor therapy. Curr Topics Microbiol Immunol 230:221–44

    CAS  Google Scholar 

  99. Lanier LL (2003) Natural killer cell receptor signaling. Curr Opin Immunol 15:308–14

    Article  PubMed  CAS  Google Scholar 

  100. Whiteside TL, Rabinowich H (1998) The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother 46:175–184

    Article  PubMed  CAS  Google Scholar 

  101. Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22:5907–14

    Article  PubMed  CAS  Google Scholar 

  102. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:21.1–22.26

    Google Scholar 

  103. Hanada T, Yoshimura A (2002) Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 13:413–21

    Article  PubMed  CAS  Google Scholar 

  104. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–96

    Article  PubMed  CAS  Google Scholar 

  105. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappa B functions as a tumor promoter in inflammation-associated cancer. Nature 431:461–66

    Article  PubMed  CAS  Google Scholar 

  106. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–50

    Article  PubMed  CAS  Google Scholar 

  107. Malik STA, Griffin DB, Fiers W, Balkwill FR (1989) Paradoxical effects of tumor necrosis factor in experimental ovarian cancer. Int J Cancer 44:918–25

    Article  PubMed  CAS  Google Scholar 

  108. Bamias A, Dimipoulos MA (2003) Angiogenesis in human cancer: implications in cancer therapy. Eur J Intern Med 14:459–69

    Article  PubMed  CAS  Google Scholar 

  109. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Vascular endothelial growth factor produced by human tumors inhibits the functional maturation of dendritic cells. Nature Med 2:1096–1103

    Article  PubMed  CAS  Google Scholar 

  110. Ellis LM, Fidler IJ (1996) Angiogenesis and metastasis. Eur J Cancer 32A:2451–60

    Article  PubMed  CAS  Google Scholar 

  111. Engbring JA, Kleinman HK (2003) The basement membrane matrix in malignancy. J Pathol 200:465–70

    Article  PubMed  CAS  Google Scholar 

  112. Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Invest 70:550–57

    Article  PubMed  CAS  Google Scholar 

  113. Toi M (2002) Proinflammation in human tumor microenvironment: its status and implication. Med Sci Monit 8:25–26

    Google Scholar 

  114. Whiteside TL (2002) Tumor-induced death of immune cells: its mechanisms and consequences. Sem Cancer Biol 12:43–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Whiteside, T.L. (2007). The Local Tumor Microenvironment. In: Kaufman, H.L., Wolchok, J.D. (eds) General Principles of Tumor Immunotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6087-8_7

Download citation

Publish with us

Policies and ethics