Skip to main content

Part of the book series: Integrated Management of Plant Pests and Diseases ((IMPD,volume 2))

Abstract

Several vegetables are grown around the Mediterranean basin for fresh consumption as a basic component of the Mediterranean diet, as climate allows cropping thorough all year. A great socioeconomic and cultural diversity makes of this area a mosaic, in which large and small-scale production systems are coexisting. Meloidogyne spp. are the main plant parasitic nematodes causing yield losses mainly in protected crops due to climate and intensive croppings. M. javanica, M. incognita and M. arenaria are the most frequent species found in almost all countries. The principles of control of rootknot nematodes are changing from the use of nematicides applied to eradicate them, towards integrated nematode management, accepting the pests presence at levels that do not cause economic yield losses, according to sustainable agricultural systems. Basic information concerning biology, plant-nematode interactions, potential yield losses and value, efficacy and costs of control methods, are necessary to elaborate prediction models to support and design integrated management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrantes, I. M. d. O., Vovlas, N., & Santos, M. S. N. D. (1991). Meloidogyne lusitanica sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing olive tree (Olea europaea L.). Journal of Nematology, 23, 210–224.

    Google Scholar 

  • Ambrogioni, L. (1969). Two cases of mixed infections by nematodes of the genera HeteroderaandMeloidogyne. Redia, 51, 159–168.

    Google Scholar 

  • Back, M. A., Haydock, P. P. J., & Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology, 51, 683–697.

    Article  Google Scholar 

  • Bafokuzara, N. D. (1983). Influence of six vegetable cultivars on reproduction of Meloidogyne javanica. Journal of Nematology, 15, 559–564.

    PubMed  CAS  Google Scholar 

  • Barceló, P., Sorribas, F. J., Ornat, C., & Verdejo-Lucas, S. (1997). Weed host to Meloidogynespp. associated with vegetable crops in northeast Spain. IOBC/WPRS Bulletin, 20, 89–93.

    Google Scholar 

  • Bello, A. (1998). Biofumigation and integrated crop management. In: Bello, A., González, J. A., Arias, M. &- Rodrìguez-Kabana, R. (Eds.), Alternatives to methyl bromide for the southern european countries (pp. 99–126). International Workshop, Arona, Tenerife, Spain

    Google Scholar 

  • Berge, J. B., Dalmasso, A., & Ritter, M. (1972). Studies on Meloidogyne hapla found in France. European Society of Nematologists, International Symposium of Nematology (11th), Reading, 2–3.

    Google Scholar 

  • Bergeson, G. B. (1959). The influence of temperature on the survival of some species of the genus Meloidogyne, in the absence of a host. Nematologica, 4, 344–354.

    Google Scholar 

  • Besri, M. (2005). Current situation of Tomato grafting as alternative to methyl bromide for tomato production in the Mediterranean region. Twelfth Annual Conference on Methyl Bromide Alternatives and Emissions Reduction.San Diego California 1–3, Nov-2005.

    Google Scholar 

  • Boiteux, L. S., & Charchar, J. M. (1996). Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breeding, 115, 198–200.

    Article  Google Scholar 

  • Bora, A. (1970). Studies on plant-parasitic nematodes in the Black Sea region and their distribution and possibilities for chemical control. Bitki Koruma Bulteni, 10, 53–71.

    Google Scholar 

  • Bridge, J. (1996). Nematode management in sustainable and subsistance agriculture. Annual Review Phytopathology, 34, 201–225,

    Article  CAS  Google Scholar 

  • Bungay, D. P. (1999). Steam sterilisation as alternative to Methyl Bromide. In: Methyl Bromide and Soilborne Diseases. Tenth Annual Interdisciplinary Meeting of the Soil-Borne Plant Diseases interest Group, 8–9 September, Stellenbosch, South Africa.

    Google Scholar 

  • Busquets, J. O., Sorribas, J., & Verdejo-Lucas, S. (1994). Potencial reproductor del nematodo Meloidogyneen cultivos hortícolas. Investigación Agraria: Producción y Protección Vegetales, 9, 1–7.

    Google Scholar 

  • Castagnone-Sereno, P., Bongiovanni, M., & Dalmasso, A. (1993). Stable virulence againts tomato resistance Mi gene in the parthenogenetic root-knot nematode Meloidogyne incognita. Phytopathology, 83, 803–805.

    Article  Google Scholar 

  • Castagnone-Sereno, P., Bongiovanni, M., & Djian-Caporalino, C. (2001). New data on the specificity of the root-knot nematode resistance genes Me1 and Me3 in pepper. Plant Breeding, 120, 429–433.

    Article  CAS  Google Scholar 

  • Castillo, P., Vovlas , N., Subbotin, S., & Troccoli, A. (2003). A new root-knot nematode, Meloidogyne baetica n. sp (Nematoda : Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology, 93, 1093–1102.

    Article  PubMed  Google Scholar 

  • Ciancio, A., Leonetti, P., & Alba, G. (2002). Studies on field application of the hyphomycete Verticillium chlamydosporiumfor biological control of root-knot nematodes. Nematologia Mediterranea, 30, 78–88.

    Google Scholar 

  • Colyer, P. D., Kirkpatrick, T. L., Vernon, P. R., Barham, J. D., & Bateman, R. J. (1998). Reducing Meloidogyne incognita injury to cucumber in a tomato-cucumber double-cropping system. Journal of Nematology, 30, 226–231.

    CAS  PubMed  Google Scholar 

  • Crump, P. (2001). Steam sterilization in chrysanthemums. In: Vick, K. W. (Ed.), Methyl bromide alternatives (pp. 1). Beltsville: USDA-ARS.

    Google Scholar 

  • Cuadra, R., Cruz, X., & Fajardo, J. F. (2000). Cultivos de ciclo corto como plantas trampas para el control del nematodo agallador. The use of short cycle crops as trap crops for the control of root-knot nematodes. Nematropica, 30, 241–246.

    Google Scholar 

  • Dabaj, K. H., & Jenser, G. (1987). List of plants infected by root-knot nematodes in Libya. International Nematology Network Newsletter, 4, 28–33.

    Google Scholar 

  • Dalmasso, A. (1980). Meloidogynenematodes and canning tomatoes. Le nematode Meloidogyne et la tomate de conserve. Pepinier-Hortic-Maraich, 205, 29–32.

    Google Scholar 

  • Dao, F. D. (1970). Climatic influence on the distribution pattern of plant parasitic and soil inhabiting nematodes. Mededelingen LandbouwHogesnappen. Wageningen, 70–72.

    Google Scholar 

  • Davis, R. F., Johnson, A. W., & Wauchope, R. D. (1993). Accelerated degradation of fenamiphos and its metabolites in soil previously treated with fenamiphos. Journal of Nematology, 25, 679–685.

    CAS  PubMed  Google Scholar 

  • Di Vito, M., Cianciotta, V., & Zaccheo, G. (1992). Yield of susceptible and resistant pepper in microplots infested with Meloidogyne incognita. Nematropica, 22, 1–6.

    Google Scholar 

  • Di Vito, M., Greco, N., & Carella, A. (1986). Effect a Meloidogyne incognita and importance of the inoculum on the yield of eggplant. Journal of Nematology, 18, 487–490.

    PubMed  CAS  Google Scholar 

  • Di Vito, M., & Saccardo, F. (1979). Resistance of Capsicum species to Meloidogyne incognita. In: F. Lamberti & E. E. Taylor (Eds.), Root-Knot nematodes (Meloidogynesp.): Systematics, Biology and Control (pp. 455–456). London: Academic Press.

    Google Scholar 

  • Djian-Caporalino, C., Pijarowski, L., Januel, A., Lefebvre, V., Daubeze, A., Palloix, A., et al. (1999). Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 99, 496–502.

    Article  Google Scholar 

  • Dropkin, V. (1969). The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: Reversal by temperature. Phytopathology, 59, 1632–1637.

    Google Scholar 

  • Duncan, L. W. (1991). Current options for nematode management. Annual Review of Phytopathology, 29, 469–490.

    Article  PubMed  CAS  Google Scholar 

  • Eddaoudi, M., Ammati, M., & Rammah, A. (1997). Identification of resistance breaking populations of Meloidogyneon tomatoes in Morocco and their effect on new sources of resistance. Fundamental and Applied Nematology, 20, 285–289.

    Google Scholar 

  • EPPO (2006). Data Sheets on Quarantine Pests. Meloidogyne chitwoodi. EPPO A2 List of Pests Recommended for Regulationas Quarantine Pests, No. 227, 6.

    Google Scholar 

  • FAO (2006). FAOSTAT. Citation Database Results.FAOSTAT,

    Google Scholar 

  • FAO, Grupo de cultivos hortícolas. (2002). (Eds.), El Cultivo Protegido en Clima Mediterráneo (pp. 320) Roma: Organización para las Naciones Unidas y para la Agricultura y la Alimentación.

    Google Scholar 

  • Ferris, H. (1978). Nematode economic thresholds: Derivation, requirements, and theoretical implications. Journal of Nematology, 10, 341–350.

    Google Scholar 

  • Ferris, H., & Noling, J. W. (1987). Analysis and prediction as a basis for management decisions. In: R. H. Brown & B. R. Kerry (Eds.), Principles and practice of nematode control in crops (pp. 49–85). Australia: Academic Press.

    Google Scholar 

  • Ferris, H., Roberts, P. A., & Thomason, I. J. (1985). Nematodes. In: Project, University of California Statewide Integrated Pest Management. (Eds.), Integrated pest management for tomatoes (pp. 60–65). Division of Agriculture and Natural Resources. Publication 3274.

    Google Scholar 

  • Gamliel, A., & Stapleton, J. J. (1993). Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology, 83, 899–905.

    Article  CAS  Google Scholar 

  • Godfrey, G. H., & Oliveira, J. (1932). The development of the root-knot nematode in relation to root tissues of pineapple and cowpea. Phytopathology, 22, 325–348.

    Google Scholar 

  • Goodell, P. B., & Ferris, H. (1989). Influence of environmental factors on the hatch and survival of Meloidogyne incognita. Journal of Nematology, 21, 328–334.

    PubMed  CAS  Google Scholar 

  • Greco, N., Brandonisio, A., & Elia, F. (1985). Control of Ditylenchus dipsaci, Heterodera carotae and Meloidogyne javanica by solarization. Nematologia Mediterranea, 13, 191–197.

    Google Scholar 

  • Greco, N., Brandonisio, A., & Elia, F. (1992). Efficacy of SIP 5561 and soil solarization for management of Meloidogyne incognita and M. javanica on tomato. Nematologia Mediterranea, 20, 13–16.

    Google Scholar 

  • Greco, N., & Esmenjaud, D. (2004). Management strategies for nematode control in Europe. In: R. Cook & D. J. Hunt (Eds.), Nematology Monographs & Perpectives. Proceedings of the Fourth International Congress of Nematology (pp. 33–43). Spain: Tenerife. The Nederlands: Brill, Leiden.

    Google Scholar 

  • Grujicic, G. (1975). Root knot nematodes (Meloidogynespp.) on kitchen garden vegetables and possibilities of their control by preparations which are not phytotoxic. Agronomski Glasnik, 37, 23–24.

    Google Scholar 

  • Grujicic, G. (1974). Studies on plant parasitic nematodes of maize plants. Biljna Zastita, 5, 193.

    Google Scholar 

  • Grujicic, G. & Paunovic, M. (1971). A contribution to the study of the root-knot nematode (Meloidogyne haplaChitwood). Zastita Bilja, 22, 112–113.

    Google Scholar 

  • Hallmann, J., Hänisch, D., Braunsmann, J., & Klenner, M. (2005). Plant-parasitic nematodes in soil-less culture systems. Nematology, 7, 1–4.

    Article  Google Scholar 

  • Hanna, H. Y., Colyer, P. D., Kirkpatrick, T. L., Romaine, D. J., & Vernon, P. R. (1994). Feasibility of improving cucumber yield without chemical control in soils suceptible to nematode buildup. Hortscience, 29, 1136–1138.

    Google Scholar 

  • Hare, W. W. (1956). Resistance in pepper to Meloidogyne incognita acrita.. Phytopathology, 46, 98–104.

    Google Scholar 

  • Hartman, K. M., & Sasser, J. N. (1985). Identification of Meloidogynespecies on the basis of differential host test and perineal pattern morphology. In: K. R. Barker, C. C. Carter & J. N. Sasser (Eds.), An advanced treatise on Meloidogyne. Volume II: Methodology (pp. 69–77). Raleigh, North Carolina, USA: North Carolina State University Graphics.

    Google Scholar 

  • Hashim, Z. (1979). A preliminary report on the plant-parasitic nematodes in Jordan. Nematologia Mediterranea, 7, 177–186.

    Google Scholar 

  • Hendy, H., Pochard, E., & Dalmasso, A. (1985). Transmission héréditaire de la résistance aux nématodes Meloidogyne Chitwood (Tylenchida) portée par deux lignées de Capsicum annuum L.: étude de descendances homozygotes issues d’androgenése. Agronomie, 5, 93–100.

    Article  Google Scholar 

  • Hirschmann, H. (1986). Meloidogyne hispanican. sp. (Nematoda: Meloidogynidae), the “Seville root-knot nematode”. Journal of Nematology, 18, 520–532.

    PubMed  CAS  Google Scholar 

  • Hooper, D. J. & Evans, K. (1993). Extraction, identification and control of plant parasitic nematodes. In Plant parasitic nematodes in temperate agriculture. CAB International, Wallingford, UK, pp. 1–59.

    Google Scholar 

  • Hussey, R. S., & McGuire, J. M. (1987). Interactions with other organisms. In: R. H. Brown & B. R. Kerry (Eds.), Principles and practice of nematode control in crops (pp. 294–328). Australia: Academic Press.

    Google Scholar 

  • Ibrahim, I. K. A., Ibrahim, I. A., & Rezk, M. A. (1972). Pathogenicity of certain parasitic nematodes on rice. Alexandria Journal of Agricultural Research, 20, 175–181.

    Google Scholar 

  • Ibrahim, I. K. A., & Rezk, M. A. (1988). The root-knot nematode - a major problem in crop production in Egypt. In: M. A. Maqbool, A. M. Golden, A. Ghaffar & L. R. Krusberg (Eds.), Advances in Plant Nematology (pp. 81–98). Karachi, Pakistan: Proceedings of the U.S.-Pakistan International Workshop on Plant Nematology, April 6–8, 1986.

    Google Scholar 

  • Ibrahim, Y. K. A. (1985). The status of root-knot nematodes in the middle east, region VII of the international Meloidogyneproject. In: K. R. Barker, C. C. Carter & J. N. Sasser (Eds.), An advanced treatise on Meloidogyne. Volume II: Methodology (pp. 373–378). Raleigh, North Carolina, USA: North Carolina State University Graphics.

    Google Scholar 

  • Jacquet, M., Bongiovanni, M., Martinez, M., Verschave, P., Wajnberg, E., & Castagnone-Sereno, P. (2005). Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathology, 54, 93–99.

    Article  Google Scholar 

  • Jiménez-Millan, F., Bello, A., Arias, M., & López Pedregal, J. M. (1964). Morfología de las especies del género Meloidogyne(Nematoda) de varios focos de infección de cultivos españoles. Boletin De La Real Sociedad Española De Historia Natural, 143–153.

    Google Scholar 

  • Kaplan, D. T., & Keen, N. T. (1980). Mechanisms conferring plant incompatibility to nematode. Revue de Nématologie, 3, 123–124.

    Google Scholar 

  • Karajeh, M., Abu-Gharbieh, W., & Masoud, S. (2005a). Virulence of root-knot nematodes, Meloidogynespp., on tomato bearing the Mi gene for resistance. Phytopathologia Mediterranea, 44, 24–28.

    CAS  Google Scholar 

  • Karajeh, M., Abu-Gharbieh, W., & Masoud, S. (2005b). First report of the root-knot nematode Meloidogyne arenariarace 2 from several vegetable crops in Jordan. Plant Disease, 89, 206.

    Article  Google Scholar 

  • Karpouzas, D. G., Giannakou, I. O., Walker, A., & Gowen, S. R. (1999). Reduction in biological efficacy of ethoprophos in a soil from Greece due to enhanced biodegradation: comparing bioassay with laboratory incubation data. Pesticide Science, 55, 1089–1094.

    Article  CAS  Google Scholar 

  • Karpouzas, D. G., Hatziapostolou, P., Papadopoulou-Mourkidou, E., Giannakou, I. O., & Geogiadou, A. (2004). The enhaced biodegradation of fenamiphos in soils from previosly trated sites and effect of soil fumigants. Environmental Toxicology and Chemistry, 23, 2099–2107.

    Article  PubMed  CAS  Google Scholar 

  • Katan, J., Greenberger, A., Laon, H., & Grinstein, A. (2007). Solar heating by polyethylene mulching for the control of diseases caused by soil-borne pathogens. Phytopathology, 66, 683–688.

    Google Scholar 

  • Khan, M. W. (1982). State of knowledge of root-knot nematodes in Libyan Jamahiriya. Proceedings of the Second Research and Planning Conference on Root-Knot Nematodes Meloidogyne spp. Region VII. Raleigh, NC: North Carolina State University Graphics.

    Google Scholar 

  • Khan, M. W., & Dabaj, K. H. (1980). Some preliminary observations on root-knot nematodes of vegetable crops in Tripoli region of Libyan Jamahiriya. Libyan Journal of Agriculture, 9, 127–136.

    Google Scholar 

  • Kirkegaard, J., & Sarwar, M. (1998). Biofumigation potential of Brassicas - I. Variation in glucosinolate profiles of diverse field-grown Brassicas. Plant and Soil, 201, 71–89.

    Article  CAS  Google Scholar 

  • Koliopanos, C. N. (1982). Contribution to the study of the root-knot nematode (Meloidogyne spp.) in Greece. Proceedings of the Second Research and Planning Conference on Root-Knot Nematodes Meloidogyne spp. Region VII. Raleigh, NC: North Carolina State University Graphics.

    Google Scholar 

  • Kyrou, N. C. (1976). New records of nematodes in Greece. Plant Disease Reporter, 60, 630.

    Google Scholar 

  • Lagüe, C., Gill, J., & Péloquin, G. (2001). Thermal control in plant protection. In: C. Vincent, B. Panneton & F. Fleurat-Lessard (Eds.), Physical control methods in plant protection (pp. 35–46). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Lahtinen, A. E., Trudgill, D. L., & Tiilikkala, K. (1988). Threshold temperature and minimum time requirements for the complete life cycle of Meloidogyne haplafrom northern Europe. Nematologica, 34, 443–451.

    Google Scholar 

  • Lamberti, F. (1981). Plant nematode problems in the Mediterranean region. Helminthologial Abstracts, Serie B, Plant Nematology. CAB, 50, 145–166.

    Google Scholar 

  • Lopez-Llorca, L. V., Jansson, H. B., Macià, J. G., & Salinas, J. (2006). Nematophagous fungi as root endophytes. In: B. Schulz, C. Boyle & T. Sieber (Eds.), Microbial root endophytes (pp. 191–206). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Macaron, J. H., Laterrot, P., Davet, K., Makkouk, K., & Revise A. (1975). A study of the behaviour in the Lebanon of varieties and hybrids of Lycopersicon esculentum Mill. Resistant to nematodes, tobacco mosaic virus and the chief parasitic fungi. Poljoprivredna Znanstvena Smotra, Agriculrurae Conspectus Scientificus 1976, 39, 113–119.

    Google Scholar 

  • Madulu, J. D., & Trudgill, D. L. (1994). Influence of temperature on the development and survival of Meloidogyne javanica. Nematologica, 40, 230–243.

    Article  Google Scholar 

  • MBTOC. (2006). Alternatives to methyl bromide for soils uses. Montreal protocol on substances that deplete the ozone layer. United Nations Environment Programme (UNEP). Report of the Methyl Bromide Technical Options Committee.

    Google Scholar 

  • McSorley, R. & Dickson, D. W. (1991). Determining consistency of spatial dispersion of nematodes in small plots. Journal of Nematology, 23, 65–72.

    Google Scholar 

  • McSorley, R., & Parrado, J. L. (1982). Estimating relative error in nematode numbers from single soil samples composed of multiple cores. Journal of Nematology, 14, 522–529.

    PubMed  CAS  Google Scholar 

  • McSorley, R., & Phillips, M. S. (1993). Modeling population dynamics and yield losses and their use in nematode management. In: K. Evans, D. L. Trudgill & J. M. Webster (Eds.), Plant parasitic nematodes in temperate agriculture (pp. 61–85). Wallingford, Oxon, UK: CAB International.

    Google Scholar 

  • Melakeberhan, H., Xu, A., Kravchenco, A., Mennan, S., & Riga, E. (2006). Potential use of arugula (Eruca sativaL.) as a trap crop for Meloidogyne hapla. Nematology, 8, 793–799.

    Article  Google Scholar 

  • Minz, G. (1956). How the potato root nematode was discovered in Israel. Plant Disease Reporter, 40, 688–699.

    Google Scholar 

  • Moens, M. G. (1985). Disinfestation of tomato nurseries. International Nematology Network Newsletter, 2, 14–15.

    Google Scholar 

  • Mojtahedi, H., Santo, G. S., & Pinkerton, J. (1991). Efficacy of ethoprop on Meloidogyne haplaand M. chitwoodiand enhanced biodegradation in soil. Journal of Nematology, 23, 372–379.

    CAS  PubMed  Google Scholar 

  • Netscher, C. (1976). Observations and preliminary studies on the occurrence of resistance breaking biotypes of Meloidogynespp. on tomato. Cahier Orstom Série Biologiques, 11, 173–178.

    Google Scholar 

  • Netscher, C., & Luc, M. (1974). Nématodes associés aux cultures maraïchères en Mauritanie. Agronomie Tropicale (Nogent-sur-Marne), 29, 697–701.

    Google Scholar 

  • Netscher, C., & Mauboussin, J. C. (1973). Resultats d’un essai condernant l’efficacité comparée d’une varieté resistante et de certains nematicides contre Meloidogyne javanica. Cahier Orstom Série Biologiques, 21, 97–102.

    Google Scholar 

  • Netscher, C., & Sikora, R. A. (1990). Nematode parasites of vegetables. In: M. Luc, R. Sikora & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 237–283). Wallingford, Oxon, UK; CAB International.

    Google Scholar 

  • Nico, A. I., Rapoport, H. F., Jiménez-Díaz, R. M., & Castillo, P. (2002). Incidence and population density of plant-parasitic nematodes associated with olive planting stocks at nurseries in southern Spain. Plant Disease, 86, 1075–1079.

    Article  Google Scholar 

  • Noe, J. P. (1985). Analysis and interpretation of data from nematological experiments. In: K. R. Barker, C. C. Carter & J. N. Sasser (Eds.), An advanced treatise on Meloidogyne. Volume II: Methodology (pp. 187–196). Raleigh, North Carolina, USA: North Carolina State University Graphics.

    Google Scholar 

  • Noling, J. W. (1997). Relative lethal dose, a time-temperature model for relating soil solarization efficacy and treatment duration for nematode control. 3-11-1997. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. San Diego, California, (17) 1–4.

    Google Scholar 

  • Nusbaum, C. J., & Ferris, H. (1973). The role of cropping systems in nematode population management. Annual Review of Phytopathology, 11, 423–440.

    Article  Google Scholar 

  • Orion, D., Nessim-Bistritsky, B., & Hochberg, R. (1982). Using color infrared aerial photography to study cotton fields infested with Meloidogyne incognita. Plant Disease, 66, 105–108.

    Article  Google Scholar 

  • Ornat, C. (1998). Epidemilogía de Meloidogyne en cultivos hortícolas. PhD Thesis. Facultat De Biologia. Universitat De Barcelona, España.

    Google Scholar 

  • Ornat, C., Sorribas, F. J., Verdejo-Lucas, S., & Galeano, M. (2001a). Effect of planting date on development of Meloidogyne javanicaon lettuce in northeastern Spain. Nematropica, 31, 148–149.

    Google Scholar 

  • Ornat, C., & Verdejo-Lucas, S. (1999). Distribución y densidad de población de Meloidogyne spp. en cultivos hortícolas de la comarca de El Maresme (Barcelona). Distribution and population density of Meloidogyne spp. on vegetable crops in El Maresme county (Barcelona, Spain). Investigación Agraria: Producción y Protección Vegetales, 14, 191–201.

    Google Scholar 

  • Ornat, C., Verdejo-Lucas, S., & Sorribas, F. J. (1997). Effect of the previous crop on population densities of Meloidogyne javanica and yield of cucumber. Nematropica, 27, 85–90.

    Google Scholar 

  • Ornat, C., Verdejo-Lucas, S., & Sorribas, F. J. (2001b). A population of Meloidogyne javanica in Spain virulent to the Mi resistance gene in tomato. Plant Disease, 85, 271–276.

    Article  Google Scholar 

  • Ornat, C., Verdejo-Lucas, S., Sorribas, F. J., & Tzortzakakis, E. A. (1999). Effect of fallow and root destruction on survival of root-knot and root-lesion nematodes in intensive vegetable cropping systems. Nematropica, 29, 5–16.

    Google Scholar 

  • Philis, J. (1983). Occurrence of Meloidogynespp. and races on island of Ciprus. Nematologia Mediterranea, 11, 13–19.

    Google Scholar 

  • Philis, J., & Vakis, N. (1977). Resistance of tomato varieties to the root-knot nematode Meloidogyne javanicain Ciprus. Nematologia Mediterranea, 5, 39–44.

    Google Scholar 

  • Ploeg, A. T., & Maris, P. C. (1999). Effects of temperature on the duration of the life cycle of a Meloidogyne incognita population. Nematology, 1, 389–393.

    Article  Google Scholar 

  • Prot, J. C. (1984). A naturally occurring resistance breaking biotype of Meloidogyne arenariaon tomato. Reproduction and pathogenicity on tomato cultivars Roma and Rossol. Revue de Nématologie, 7, 23–28.

    Google Scholar 

  • Prot, J. C., & Ferris, H. (1992). Sampling approaches for extensive surveys in nematology. Journal of Nematology, 24 (Supplement), 757–764.

    PubMed  CAS  Google Scholar 

  • Pyrowolakis, E. (1975). Studies on the distribution of the genus Meloidogyne on the island of Crete. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz, 82, 750–755.

    Google Scholar 

  • Rich, J. R., & Olson, S. M. (2004). Influence of Mi-gene resistance and soil fumigant application in first crop tomato on root-galling and yield in a succeeding cantaloupe crop. Nematropica, 34, 103–108.

    Google Scholar 

  • Rich, J. R., & Olson, S. M. (1999). Utility of Mi gene resistance in tomato to manage Meloidogyne javanica in North Florida. Journal of Nematology, 31, 715–718.

    PubMed  CAS  Google Scholar 

  • Riggs, R. D., & Winstead, N. N. (1959). Studies on resistance in tomato to root-knot nematodes and on the occurrence of pathogenic biotypes. Phytopathology, 49, 716–724.

    Google Scholar 

  • Roberts, P. A. (1995). Conceptual and practical aspects of variability in root-knot nematodes related to host plant resistance. Annual Review of Phytopathology, 33, 199–221.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, P. A. (2002). Concepts and consequences of resistance. In: J. L. Starr, R. Cook & J. Bridge (Eds.), Plant resistance to parasitic nematodes (pp. 23–41). Wallingford, Oxon, UK; CABI Publishing.

    Google Scholar 

  • Roberts, P. A., & Thomason, I. J. (1989). A review of variability in four Meloidogyne spp. measured by reproduction on several hosts including Lycopersicon. Agricultural Zoology Reviews, 3, 225–252.

    Google Scholar 

  • Roberts, P. A., Van Gundy, S. D., & McKinney, H. E. (1981). Effects of soil temperature and planting date of wheat on Meloidogyne incognitareproduction, soil populations, and grain yield. Journal of Nematology, 13, 338–345.

    PubMed  CAS  Google Scholar 

  • Robertson, L., Lopez-Perez, J. A., Bello, A., Diez-Rojo, M. A., Escuer, M., Piedra-Buena, A., et al. (2006). Characterization of Meloidogyne incognita, M. arenaria andM. hapla populations from Spain and Uruguay parasitizing pepper (Capsicum annuumL.). Crop Protection, 25, 440–445.

    Article  Google Scholar 

  • Ros, C., Guerrero, M. M., Martínez, M. A., Barceló, N., Martínez, M. C., Rodríguez, I., et al. (2005). Resistant sweet pepper rootstocks integrated into the management of soilborne pathogens in greenhouse. Acta-Horticulturae, 698, 305–310.

    Google Scholar 

  • Runia, W. T. (2000). Steaming methods for soils and substrates. Acta Horticulturae, 532, 115–123.

    Google Scholar 

  • Saad, A. T., & Tanveer, M. (1972). FAO Plant Protection Bulletin, 20, 31–35.

    Google Scholar 

  • Sanz, R., Escuer, M., & López-Pérez, J. A. (1998). Alternatives to Methyl Bromide for root-knot nematode control in cucurbits. In: A. Bello, M. González, M. Arias & R. Rodríguez-Kabana (Eds.), Alternatives to Methyl Bromide for the Southern European Countries (pp. 73–84). Madrid: DG XI, EU, CSIC.

    Google Scholar 

  • Sasanelli, N., Di Vito, M., & Zaccheo, G. (1992). Population densities of Meloidogyne incognita and growth of cabbage in pots. Nematologia Mediterranea, 20, 21–23.

    Google Scholar 

  • Sasser, J. N. (1954). Identification and Host parasite relationships of certain root-knot nematodes (Meloidogynespp.). Technical Bulletin College Park, Maryland Agricultural Experiment Station, A-77, 21.

    Google Scholar 

  • Sasser, J. N. (1966). Behavior of Meloidogynespp. from various geographical locations on ten host differentials. Nematologica, 12, 97.

    Google Scholar 

  • Sasser, J. N., & Carter, C. C. (1985). Overview of the international Meloidogyneproject 1975-1984. In: J. N. Sasser & C. C. Carter (Eds.), An advanced treatise on Meloidogyne. Volume I: Biology and control (pp. 19–24). Raleigh, North Carolina, USA: North Carolina State University Graphics.

    Google Scholar 

  • Scotto La Massese, C. (1961). Overview of problems posed by phytoparasitic nematodes in Algeria. In: Les nématodes (pp. 1–27). Paris, France: ACTA.

    Google Scholar 

  • Sellami, S., Lonici, M., Eddoud, A., & Besenghir, H. (1999). Distribution et plantes hotes associées aux Meloidogyne sous abris plastiques en Algerie. Distribution and host plants of Meloidogyne in plastic houses in Algeria. Nematologia Mediterranea, 27, 295–301.

    Google Scholar 

  • Shepherd, J. A., & Barker, K. R. (1990). Nematode parasites of Tobacco. In: M. Luc, R. A. Sikora & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 493–517). Wallingford, UK: CAB International.

    Google Scholar 

  • Sikora, R. A. (1992). Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annual Review of Phytopathology, 30, 245–270.

    Article  Google Scholar 

  • Sikora, R. A., Bridge, J., & Starr, J. L. (2005). Management practices: an overview of integrated nematode management technologies. In: M. Luc, R. A. Sikora & J. Bridge (Eds.), Plant parasitic nematodes in subtropical an tropical agriculture (pp. 793–825). Wallingford, UK; CAB Internacional 2005.

    Google Scholar 

  • Sikora, R. A., & Fernandez, E. (2005). Nematode Parasites of vegetables. In: M. Luc, R. A. Sikora & J. Bridge (Eds.), Plant parasitic nematodes in subtropical an tropical agriculture (pp. 319–391). Wallingford, UK; CAB Internacional 2005.

    Google Scholar 

  • Smith, P. G. (1944). Embryo culture of a tomato species hybrid. Proceedings of American Society Horticultural Sciences, 44, 413–416.

    Google Scholar 

  • Sorribas, F. J. (1996). Incidencia de Meloidgyne en el área de producción hortícola del Baix Llobregat. Ph D Thesis. Facultat De Biologia. Universitat De Barcelona, España.

    Google Scholar 

  • Sorribas, F. J., Ornat, C., Galeano, M., & Verdejo-Lucas, S. (2003). Evaluation of a native and introduced isolate of Pochonia chlamydosporiaagainst Meloidogyne javanica. Biocontrol Science and Technology, 13, 707–714.

    Article  Google Scholar 

  • Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Galeano, M., & Valero, J. (2005a). Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. European Journal of Plant Pathology, 111, 29–38.

    Article  Google Scholar 

  • Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Talavera, M., Valero, J., Torres, J., et al. (2005b). Development of predictive models for managment of Meloidogyneon tomato crops. Nematropica, 35, 99.

    Google Scholar 

  • Sorribas, F. J., & Verdejo-Lucas, S. (1994). Survey of Meloidogynespp. in tomato production fields of Baix Llobregat county, Spain. Journal of Nematology, 26, 731–736.

    PubMed  CAS  Google Scholar 

  • Sorribas, F. J., & Verdejo-Lucas, S. (1999). Capacidad parasitaria de Meloidogynespp. en cultivares de tomate resistente. Investigación Agraria: Producción y Protección Vegetales, 14, 237–247.

    Google Scholar 

  • Southards, C. J., & Priest, M. F. (1973). Variation in pathogenicity of seventeen isolates of Meloidogyne incognita. Journal of Nematology, 5, 63–67.

    Google Scholar 

  • Stapel, L. H. M., & Amsing, J. J. (2004). Populations dynamics and damage potential of the root-knot nematode Meloidogyne hapla on roses. Proceeeding of the XXVII ESN International Symposium, Rome, 14–18 June, 86–87.

    Google Scholar 

  • Stapleton, J. J. (2000). Soil solarization in various agricultural production systems. Crop Protection, 19, 837–841.

    Article  Google Scholar 

  • Starr, J. L., Bridge, J., & Cook, R. (2002). Resistance to plant parasitic nematodes: History, current use and future potential. In: J. L. Starr, R. Cook & J. Bridge. Plant resistance to parasitic nematodes (pp. 1–22). Wallinfors, Oxon, UK; CABI Publishing.

    Google Scholar 

  • Stirling, G. R. (1991). (Eds.), Biological control of plant parasitic nematodes (pp. ) Wallingford, UK.

    Google Scholar 

  • Tarjan, A. C. (1953). Geographic distribution of some Meloidogynespecies in Israel. Plant Disease Reporter, 37, 315–316.

    Google Scholar 

  • Tayar A. (1982). Seed treatment for control of M. incognitaon cotton. Proceedings of the Second Research and Planning Conference on Root-Knot Nematodes Meloidogyne spp. Region VII Raleigh, NC: North Carolina State University Graphics.

    Google Scholar 

  • Taylor, A. L., & Sasser, J. N. (1978). Biology, identification and control of root-knot nematodes. Coop. Publ. Deps. Plant Pathology, North Carolina State University and U.S. Agency for International Development, Raleigh, North Carolina State University Graphics, 111 pp.

    Google Scholar 

  • Taylor, A. L., Sasser, J. N., & Nelson, L. A. (1982). (Eds.), Relationship of climate and soil characteristics to geographical distribution of Meloidogyne species in agricultural soils (pp. 65). North Carolina USA: Department of Plant Pathology, North Carolina State University & US Agency for International Development Raleigh.

    Google Scholar 

  • Taylor, C. E. (1979). Meloidogyne interrelationships with micro-organisms. In: F. Lamberti & C. E. Taylor (Eds.), Root-knot nematodes (Meloidogynespecies): Systematics, biology and control (pp. 375–398). London. UK: Academic Press.

    Google Scholar 

  • Thies, J. A., Davis, R. F., Mueller, J. D., Fery, R. L., Langston, D. B., & Miller, G. (2004). Double-cropping cucumbers and squash after resistant bell pepper for root-knot nematode management. Plant Disease, 88, 589–593.

    Article  Google Scholar 

  • Thies, J. A., & Fery, R. L. (2000). Characterization of resistance conferred by the N gene to Meloidogyne arenariaRaces 1 and 2, M-hapla, and M-javanica in two sets of isogenic lines of Capsicum annuum L. Journal of the American Society for Horticultural Science, 125, 71–75.

    Google Scholar 

  • Thomason, I. J., Van Gundy, S. D., & Kirkpatrick, J. D. (1964). Motility and infectivity of Meloidogyne javanicaas affected by storage time and temperature in water. Phytopathology, 54, 192–195.

    Google Scholar 

  • Towson, A. J., & Apt, W. J. (1983). Effect of soil water potential on survival of Meloidogyne javanicain fallow soil. Journal of Nematology, 15, 110–114.

    PubMed  CAS  Google Scholar 

  • Trivedi, P. C., & Barker, K. R. (1986). Management of nematodes by cultural practices. Nematropica, 16, 213–236.

    Google Scholar 

  • Trudgill, D. L. (1995a). Host and plant temperature effects on nematode development rates and nematode ecology. Nematologica, 41, 398–404.

    Article  Google Scholar 

  • Trudgill, D. L. (1995b). An assessment of the relevance of thermal time relationships to nematology. Fundamental and Applied Nematology, 18, 407–417.

    Google Scholar 

  • Trudgill, D. L., & Perry, J. N. (1994). Thermal time and ecological strategies: a unifying hypothesis. Annals of Applied Biology, 125, 521–532.

    Article  Google Scholar 

  • Tyler, J. (1933). Development of the root-knot nematode as affected by temperature. Hilgardia, 7, 391–413.

    Google Scholar 

  • Tzortzakakis, E. A. (2000). The effect of Verticillium chlamydosporiumand oxamyl on the control of Meloidogyne javanica on tomatoes grown in a plastic house in Crete, Greece. Nematologia Mediterranea, 28, 249–254.

    Google Scholar 

  • Tzortzakakis, E. A., Adam, M. A. M., Blok, V. C., Paraskevopoulos, C., & Bourtzis, K. (2005). Occurrence of resistance-breaking populations of root-knot nematodes on tomato in Greece. European Journal of Plant Pathology, 113, 101–105.

    Article  Google Scholar 

  • Tzortzakakis, E. A., & Gowen, S. R. (1994). The evaluation of Pasteuria penetransalone and in combination with oxamyl, plant resistance and solarization for control of Meloidogynespp. on vegetables grown in greenhouses of Crete. Crop Protection, 13, 455–462.

    Article  Google Scholar 

  • Tzortzakakis, E. A., & Gowen, S. R. (1996). Occurrence of a resistance breaking pathotype of Meloidogyne javanicaon tomatoes in Crete, Greece. Fundamental and Applied Nematology, 19, 283–288.

    Google Scholar 

  • Tzortzakakis, E. A., & Petsas, S. E. (2003). Investigation of alternatives to methyl bromide for management of Meloidogyne javanica on greenhouse grown tomato. Pest Management Science, 59, 1311–1320.

    Article  PubMed  CAS  Google Scholar 

  • Tzortzakakis, E. A., Phillips, M. S., & Trudgill, D. L. (2000). Rotational management of Meloidogyne javanica in a small scale greenhouse trial in Crete, Greece. Nematropica, 30, 167–175.

    Google Scholar 

  • Tzortzakakis, E. A., Trudgill, D. L., & Phillips, M. S. (1998). Evidence for a dosage effect of the Mi gene on partially virulent isolates of Meloidogyne javanica. Journal of Nematology, 30, 76–80.

    PubMed  CAS  Google Scholar 

  • Tzortzakakis, E. A., Verdejo-Lucas, S., Ornat, C., Sorribas, F. J., & Goumas, D. E. (1999). Effect of a previous resistant cultivar and Pasteuria penetrans on population densities of Meloidogyne javanicain greenhouse grown tomatoes in Crete, Greece. Crop Protection, 18, 159–162.

    Article  Google Scholar 

  • Van Gundy, S. D. (1985). Ecology of Meloidogyne spp. emphasis on environmental factors affecting survival and pathogenicity. In: J. N. Sasser & C. C. Carter (Eds.), An advanced treatise on Meloidogyne Volume I: Biology and control (pp. 177–182). Raleigh, North Carolina, USA: North Carolina State University Graphics.

    Google Scholar 

  • Verdejo-Lucas, S. (1999). Nematodes. In: R. Albajes, M. L. Gullino, J. C. Van Lanteren & Y. Elad (Eds.), Integrated pest and disease management in greenhouse crops (pp. 61–68). The Netherlands: Kluwer Academic.

    Google Scholar 

  • Verdejo-Lucas, S., Buñol, J., Sorribas, F. J., & Ornat, C. (2004). Eficacia del porta-injerto de tomate frente a cultivares portadores del gen Mi para el manejo del nematodo Meloidogyne. Phytoma España, 158, 13–18.

    Google Scholar 

  • Verdejo-Lucas, S., Español, M., Ornat, C., & Sorribas, F. J. (1997). Occurrence ofPasteuria spp. in northeastern Spain. Nematologia Mediterranea, 25, 109–112.

    Google Scholar 

  • Verdejo-Lucas, S., Ornat, C., Sorribas, F. J., & Stchiegel, A. (2002). Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almeria and Barcelona, Spain. Journal of Nematology, 34, 405–408.

    PubMed  CAS  Google Scholar 

  • Verdejo-Lucas, S., Sorribas, F. J., Ornat, C., & Galeano, M. (2003). Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathology, 52, 521–528.

    Article  Google Scholar 

  • Verdejo-Lucas, S., Sorribas, J., & Puigdomènech, P. (1994). Pérdidas de producción en lechuga y tomate causadas por Meloidogyne javanicaen invernadero. Investigación Agraria: Producción y Protección Vegetales, 2, 395–400.

    Google Scholar 

  • Waldmann, H. (1971). A new method of controlling the root knot nematode? Gesunde Pflanzen, 23, 227–232.

    Google Scholar 

  • Walters, S. A., Wehner, T. C., & Barker, K. R. (1999). Greenhouse and field resistance in cucumber to root-knot nematodes. Nematology, 1, 279–284.

    Article  Google Scholar 

  • Walters, S. A., Wehner, T. C., & Barker, K. R. (1996). NC-42 and NC-43: Root-knot nematode-resistance cucumber germplasm. Hortscience, 31, 1246–1247.

    Google Scholar 

  • Wang, M., & Goldman, I. L. (1996). Resistance to Root Knot Nematode (Meloidogyne haplaChitwood) in Carrot Is Controlled by Two Recessive Genes. Journal of Heredity, 87, 119–123.

    Google Scholar 

  • Webster, J. M. (1985). Interaction of Meloidogynewith fungi on crop plants. In: J. N. Sasser & C. C. Carter, (Eds.) An Advanced Treatise on Meloidogyne Volume I: Biology and Control (pp. 183–192). Raleigh, North Carolina, USA: North Carolina State University Graphics.

    Google Scholar 

  • Williamson, V. M. (1998). Root-knot nematode resistance genes in tomato and their potential for future use. Annual Review of Phytopathology, 36, 277–293.

    Article  PubMed  CAS  Google Scholar 

  • Zasada, I. A., & Ferris, H. (2004). Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biology & Biochemistry, 36, 1017–1024.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Ornat, C., Sorribas, F.J. (2008). Integrated Management Of Root-Knot Nematodes In Mediterranean Horticultural Crops. In: Ciancio, A., Mukerji, K.G. (eds) Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. Integrated Management of Plant Pests and Diseases, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6063-2_14

Download citation

Publish with us

Policies and ethics