Skip to main content

Peroxiredoxins in Bacterial Antioxidant Defense

  • Chapter
Peroxiredoxin Systems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 44))

Abstract

Peroxiredoxins constitute an important component of the bacterial defense against toxic peroxides. These enzymes use reactive cysteine thiols to reduce peroxides with electrons ultimately derived from reduced pyridine dinucleotides. Studies examining the regulation and physiological roles of AhpC, Tpx, Ohr and OsmC reveal the multi-layered nature of bacterial peroxide defense. AhpC is localized in the cytoplasm and has a wide substrate range that includesH2O2, organic peroxides and peroxynitrite. This enzyme functions in both the control of endogenous peroxides, as well as in the inducible defense response to exogenous peroxides or general stresses. Ohr, OsmC and Tpx are organic peroxide specific. Tpx is localized to the periplasm and can be involved in either constitutive peroxide defense or participate in oxidative stress inducible responses depending on the organism. Ohr is an organic peroxide specific defense system that is under the control of the organic peroxide sensing repressor OhrR. In some organisms Ohr homologs are regulated in response to general stress. Clear evidence indicates that AhpC, Tpx and Ohr are involved in virulence. The role of OsmC is less clear. Regulation of OsmC expression is not oxidative stress inducible, but is controlled by multiple general stress responsive regulators

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ades, S.E., 2004, Control of the alternative sigma factor sigmaE in Escherichia coli. Curr. Opin. Microbiol. 7: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Antelmann, H., Engelmann, S., Schmid, R., and Hecker, M., 1996, General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178: 6571–6578.

    PubMed  CAS  Google Scholar 

  • Armstrong-Buisseret, L., Cole, M.B., and Stewart, G.S., 1995, A homologue to the Escherichia coli alkyl hydroperoxide reductase AhpC is induced by osmotic upshock in Staphylococcus aureus. Microbiol. 141: 1655–1661.

    CAS  Google Scholar 

  • Arnold, C.N., McElhanon, J., Lee, A., Leonhart, R., and Siegele, D.A., 2001, Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J. Bacteriol. 183: 2178–2186.

    Article  PubMed  CAS  Google Scholar 

  • Atichartpongkul, S., Loprasert, S., Vattanaviboon, P., Whangsuk, W., Helmann John, D., and Mongkolsuk, S., 2001, Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiol. 147: 1775–1782.

    CAS  Google Scholar 

  • Baillon, M.-L.A., van Vliet, A.H.M., Ketley, J.M., Constantinidou, C., and Penn, C.W., 1999, An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J. Bacteriol. 181: 4798–4804.

    CAS  Google Scholar 

  • Baker, L.M., and Poole, L.B., 2003, Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 278: 9203–9211.

    Article  PubMed  CAS  Google Scholar 

  • Baker, L.M., Raudonikiene, A., Hoffman, P.S., and Poole, L.B., 2001, Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J. Bacteriol. 183: 1961–1973.

    Article  PubMed  CAS  Google Scholar 

  • Banjerdkij, P., Vattanaviboon, P., and Mongkolsuk, S., 2005, Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatments in Xanthomonas campestris. Appl. Environ. Microbiol. 7: 1843–1849.

    Article  CAS  Google Scholar 

  • Bernhardt, J., Volker, U., Volker, A., Antelmann, H., Schmid, R., Mach, H., and Hecker, M., 1997, Specific and general stress proteins in Bacillus subtilis - a two-dimensional protein electrophoresis study. Microbiol. 143: 999–1017.

    Article  CAS  Google Scholar 

  • Blankenhorn, D., Phillips, J., and Slonczewski, J.L., 1999, Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J. Bacteriol. 181: 2209–2216.

    PubMed  CAS  Google Scholar 

  • Bouvier, J., Gordia, S., Kampmann, G., Lange, R., Hengge-Aronis, R., and Gutierrez, C., 1998, Interplay between global regulators of Escherichia coli: effect of RpoS, Lrp and H-NS on transcription of the gene osmC. Mo.l Microbiol. 28: 971–980.

    Article  CAS  Google Scholar 

  • Brenot, A., King, K.Y., and Caparon, M.G., 2005, The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol. Microbiol. 55: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Brune, I., Brinkrolf, K., Kalinowski, J., Puhler, A., and Tauch, A., 2005, The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6: 86.

    Article  PubMed  CAS  Google Scholar 

  • Bryk, R., Griffin, P., and Nathan, C., 2000, Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., and Nathan, C., 2002, Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  • Bsat, N., Chen, L., and Helmann, J.D., 1996, Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178: 6579–6586.

    PubMed  CAS  Google Scholar 

  • Bsat, N., Herbig, A.F., Cassillas-Martinez, L., Setlow, P., and Helmann, J.D., 1998, Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 29: 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Cha, M.-K., Kim, H.-K., and Kim, I.-H., 1995, Thioredoxin-linked ‘‘thiol peroxidase’’ from periplasmic space of Escherichia coli. J. Biol. Chem. 270: 28635–28641.

    Article  PubMed  CAS  Google Scholar 

  • Cha, M.-K., Kim, H.-K., and Kim, I.-H., 1996, Mutation and Mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family. J. Bacteriol. 178: 5610–5614.

    PubMed  CAS  Google Scholar 

  • Cha, M.-K., Kim, W.-C., Lim, C.-J., Kim, K., and Kim, I.-H., 2004, Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J. Biol. Chem. 279: 8769–8778.

    Article  PubMed  CAS  Google Scholar 

  • Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G., 1994, Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Pro.c Nat.l Acad. Sci. USA 91: 7017–7021.

    Article  CAS  Google Scholar 

  • Charoenlap, N., Eiamphungporn, W., Nopmanee, C., Utamapongchai, S., Vattanaviboon, P., and Mongkolsuk, S., 2005, OxyR mediated compensatory expression between ahpC and katA and the significance of ahpC in protection from hydrogen peroxide in Xanthomonas campestris. FEMS Microbiol. Let.t 249: 73–78.

    Article  CAS  Google Scholar 

  • Chen, L., Keramati, L., and Helmann, J.D., 1995, Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl. Acad. Sci. USA 92: 8190–8194.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Xie, Q.-W., and Nathan, C., 1998, Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell. 1: 795–805.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J., Choi, S., Choi, J., Cha, M.-K., Kim, I.-H., and Shin, W., 2003, Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins. J. Biol. Chem. 278: 49478–49486.

    Article  PubMed  CAS  Google Scholar 

  • Christman, M.F., Morgan, R.W., Jacobson, F.S., and Ames, B.M., 1985, Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753–762.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, M.-H., Wu, M.-S., Lo, W.-L., Jaw-Town, L., Wong, C.-H., and Chiou, S.-H., 2006, The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. USA 103: 2552–2557.

    Article  PubMed  CAS  Google Scholar 

  • Chuchue, T., Tanboon, W., Prapagdee, B., Dubbs, J.M., Vattanaviboon, P., and Mongkolsuk, S., 2006, ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens. J. Bacteriol. 188: 842–851.

    Article  PubMed  CAS  Google Scholar 

  • Comtois, S.L., Gidley, M.D., and Kelly, D.J., 2003, Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiol. 149: 121–129.

    Article  CAS  Google Scholar 

  • Conter, A., Gagneaux, C., Magali, S., and Gutierrez, C., 2001, Survival of Escherichia coli during long-term starvation: effects of aeration, NaCl, and the rpoS and osmC gene products. Res. Microbiol. 152: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Conter, A., Sturny, R., Gutierrez, C., and Cam, K., 2002, The RcsCB His-Asp phosphorelay system is essential to overcome chlorpromazine-induced stress in Escherichia coli. J. Bacterio.l 10: 2850–2853.

    Article  CAS  Google Scholar 

  • Cussiol, J.R.R., Alves, S.V., de Oliviera, M.A., and Netto, L.E.S., 2003, Organic hydroperoxide resistance gene encodes a thiol-dependent peroxidase. J. Biol. Chem. 278: 11570–11578.

    Article  PubMed  CAS  Google Scholar 

  • Davalos-Garcia, M., Conter, A., Toesca, I., Gutierrez, C., and Cam, K., 2001, Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J. Bacteriol. 183: 5870–5876.

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira, M.A., Netto, L.E.S., Medrano, F.J., Barbosa, G., Alves, S.V., Cussiol, J.R.R., and Guimares, B.G., 2004, Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa. Acta Crystallogr. D Biol. Crystallogr. 60: 337–339.

    Article  CAS  Google Scholar 

  • Deretic, V., Philipp, W., Dhandayuthapani, S., Mudd, M.H., Curcic, R., Garbe, T.R., Heym, B., Via, L.E., and Cole, S.T., 1995, Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol. Microbiol. 17: 889–900.

    Article  PubMed  CAS  Google Scholar 

  • Dhandayuthapani, S., Mudd, M.H., and Deretic, V., 1997, Interactions of OxyR with the promoter region of the oxyR and ahpC genes from Mycobacterium leprae and Mycobacterium tuberculosis. J. Bacteriol. 179: 2401–2409.

    PubMed  CAS  Google Scholar 

  • Dhandayuthapani, S., Zhang, Y., Mudd, M.H., and Deretic, V., 1996, Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J. Bacteriol. 178: 3641–3649.

    PubMed  CAS  Google Scholar 

  • Diaz, P.I., V, W., Corthals, G.L., and Rogers, A.H., 2004, Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis. Oral Microbiol. Immunol. 19: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Dintilhac, A., and Claverys, J.P., 1997, The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res. Microbiol. 148: 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Dolin, M.I., 1961, Cytochrome-independent electron transport enzymes of bacteria, in The bacteria Vol. 2 (Gunsalus, I.C. and Stanier, R.Y., eds), Academic Press Inc., New York, N.Y., USA, pp. 425–460.

    Google Scholar 

  • Domenech, P., Honore, N., Heym, B., and Cole, S.T., 2001, Role of OxyS of Mycobacterium tuberculosis in oxidative stress: overexpression confers increased sensitivity to organic hydroperoxides. Microbes. Infect. 3: 713–721.

    Article  PubMed  CAS  Google Scholar 

  • Dorman, C.J., 2004, H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Dorsey, C.W., Tomaras, A.P., and Actis, L.A., 2006, Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Plasmid 56: 112–123.

    Article  PubMed  CAS  Google Scholar 

  • Dosanjh, N.S., Rawat, M., Chung, J.-H., and Av-Gay, Y., 2005, Thiol specific oxidative stress response in Mycobacteria. FEMS Microbiol. Lett. 249: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, H.R., and Poole, L.B., 1997, Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36: 13349–13356.

    Article  PubMed  CAS  Google Scholar 

  • Elsaghier, A., Nolan, A., Allen, B., and Ivanyi, J., 1992, Distinctive western blot antibody patterns induced by infection of mice with individual strains of the Mycobacterium avium complex. Immunol. 76: 355–361.

    CAS  Google Scholar 

  • Ernst, F.D., Bereswill, S., Waidner, B., Stoof, J., Mader, U., Kusters, J.G., Kuipers, E.J., Kist, M., van Vliet, A.H.M., and Homuth, G., 2005a, Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiol. 151: 533–546.

    Article  CAS  Google Scholar 

  • Ernst, F.D., Homuth, G., Stoof, J., Mader, U., Waidner, B., Kuipers, E.J., Kist, M., Kusters, J.G., Bereswill, S., and van Vliet, A.H.M., 2005b, Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J. Bacteriol. 187: 3687–3692.

    Article  CAS  Google Scholar 

  • Francis, K.P., and Gallagher, M.P., 1993, Light emission from a Mudlux transcriptional fusion in Salmonella typhimurium is stimulated by hydrogen peroxide and by interaction with the mouse macrophage cell line J774.2. Infect. Immun. 61: 640–649.

    PubMed  CAS  Google Scholar 

  • Francis, K.P., Taylor, P.D., Inchley, C.J., and Gallagher, M.P., 1997, Identification of the ahp operon of Salmonella typhimurium as a macrophage-induced locus. J. Bacteriol. 179: 4046–4048.

    PubMed  CAS  Google Scholar 

  • Fuangthong, M., Atichartpongkun, S., Mongkolsuk, S., and Helmann, D., 2001, OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J. Bacteriol.. 183: 4134–4141.

    Article  PubMed  CAS  Google Scholar 

  • Fuangthong, M., and Helmann, J.D., 2003, Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J. Bacteriol. 185: 6348–6357.

    Article  PubMed  CAS  Google Scholar 

  • Fuangthong, M., and Helmann, D., 2002a, The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc. Natl. Acad. Sci. USA 99: 6690–6695.

    Article  CAS  Google Scholar 

  • Fuangthong, M., Herbig, A.F., Bsat, N., and Helmann, D., 2002b, Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacterio.l 184: 3276–3286.

    Article  CAS  Google Scholar 

  • Fukumori, F., and Kishii, M., 2001, Molecular cloning and transcriptional analysis of the alkyl hydroperoxide reductase genes from Pseudomonas putida KT2442. J. Gen. Appl. Microbiol. 47: 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Gancz, H., Censini, S., and Merrell, D.S., 2006, Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect. Immun. 74: 602–614.

    Article  PubMed  CAS  Google Scholar 

  • Ganeshkumar, N., Hannam, P.M., Kolenbrander, P.E., and McBride, B.C., 1991, Nucleotide sequence of a gene coding for a saliva-binding protein (SsaB) from Streptococcus sanguis 12 and possible role of the protein in coaggregation with actinomyces. Infect. Immun. 59: 1093–1099.

    PubMed  CAS  Google Scholar 

  • Garbe, T.R., Kobayashi, M., and Yukawa, H., 2000, Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity. Arch. Microbiol. 173: 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Gordia, S., and Gutierrez, C., 1996, Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12. Mol. Microbiol. 19: 729–736.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T., and Demple, B., 1988, Overproduction of peroxide-scavenging enzymes in Escherichia coli suppresses spontaneous mutagenesis and sensitivity to redox-cycling agents in oxyR-mutants. EMBO J. 7: 2611–2617.

    PubMed  CAS  Google Scholar 

  • Gutierrez, C., Barondess, J., Manoil, C., and Beckwith, J., 1987, The use of transposon TnphoA to detect genes for cell envelope proteins subject to a common regulatory stimulus. Analysis of osmotically regulated genes in Escherichia coli. J. Mol. Biol. 195: 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, C., and Devedjian, J.C., 1991, Osmotic induction of gene osmC expression in Escherichia coli K12. J. Mol. Biol. 220: 959–973.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, J.-S., Oh, S.-Y., and Roe, J.-H., 2002, Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3(2). J. Bacteriol. 184: 5214–5222.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1–14.

    PubMed  CAS  Google Scholar 

  • Hausladen, A., Privalle, C.T., Keng, T., De Angelo, J., and Stamler, J.S., 1996, Nitrosative stress: activation of the transcription factor OxyR. Cell 86: 719–29.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, M., and Volker, A., 2001, General stress response of Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 44: 35–91.

    Article  PubMed  CAS  Google Scholar 

  • Helmann, J.D. (2002). OxyR: A molecular code for redox sensing. Sci STKE 157: PE46.

    Google Scholar 

  • Helmann, J.D., Wu, M., Fang, Winston, Gaballa, A., Kobel, P.A., Morshedi, M.M., Fawcett, P., and Paddon, C., 2003, The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J. Bacteriol. 185: 243–253.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff, S., Haughn, G.W., Calvo, J.M., and Wallace, J.C., 1988, A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85: 6602–6606.

    Article  PubMed  CAS  Google Scholar 

  • Herbig, A.F., and Helmann, J.D., 2001, Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41: 849–859.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, M., Yamamoto, Y., and Kamio, Y., 2000, Molecular biology of oxygen tolerance in lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress. J. Biosci. Bioeng. 90: 484–493.

    PubMed  CAS  Google Scholar 

  • Higuchi, M., Yamamoto, Y., Poole, L.B., Shimada, M., Satoh, Y., Takahashi, N., and Kamio, Y., 1999, Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 181: 5940–5947.

    PubMed  CAS  Google Scholar 

  • Hillas, P.J., Soto del Alba, F., Oyarzabal, J., Wilks, A., and Ortiz de Montellano, P.R., 2000, The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J. Biol. Chem. 275: 18801–18809.

    Article  PubMed  CAS  Google Scholar 

  • Hoper, D., Bernhardt, J., and Hecker, M., 2006, Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach. Proteomics 6: 1550–62.

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh, M.J., Clements, M.O., Crossley, H., Ingham, E., and Foster, S.J., 2001, PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect. Immun. 69: 3744–3754.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J.A., 2003, Pathways of oxidative damage. Annu. Rev. Microbiol. 57: 395–418.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, F.S., Morgan, R.W., Christman, M.F., and Ames, B.M., 1989, An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J. Bacteriol. 171: 2049–2055.

    PubMed  Google Scholar 

  • Jaeger, T., Budde, H., Flohé, L., Menge, U., Singh, M., Trujillo, M., and Radi, R., 2004, Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch. Biochem. Biophy.s 423: 182–191.

    Article  CAS  Google Scholar 

  • Jakubovics, N.S., Smith, A.W., and Jenkinson, H.F., 2002, Oxidative stress tolerance is manganese (Mn2+) regulated in Streptococcus gordonii. Microbiol. 148: 3255–3263.

    CAS  Google Scholar 

  • Johnson, N.A., Liu, Y., and Fletcher, H.M., 2004, Alkyl hydroperoxide peroxidase subunit C (ahpC) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. Oral Microbiol. Immunol. 19: 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Jungblut, P.R., Bumann, D., Haas, G., Zimny-Arndt, U., Holland, P., Lamer, S., Siejak, F., Aebischer, A., and Meyer, T.F., 2000, Comparative proteome analysis of Helicobacter pylori. Mol. Microbiol. 36: 710–725.

    Article  PubMed  CAS  Google Scholar 

  • Karupiah, G., Hunt, N.H., King, N.J., and Chaudhri, G., 2000, NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response. Rev. Immunogenet. 2: 387–415.

    PubMed  CAS  Google Scholar 

  • Kim, S., Oog, Merchant, K., Nudelman, R., Beyer, W.F.J., Keng, T., DeAngelo, J., Hausladen, A., and Stamler, J.S., 2002, OxyR: a molecular code for redox-related signaling. Cell 109: 383–396.

    Article  PubMed  CAS  Google Scholar 

  • King, K.Y., Horenstein, J.A., and Caparon, M.G., 2000, Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182: 5290–5299.

    Article  PubMed  CAS  Google Scholar 

  • Klomsiri, C., Panmanee, W., Dharmsthiti, S., Vattanaviboon, P., and Mongkolsuk, S., 2005, Novel roles of ohrR-ohr in Xanthomonas sensing, metabolism, and physiological adaptive response to lipid hydroperoxide. J. Bacteriol. 187: 3277–3281.

    Article  PubMed  CAS  Google Scholar 

  • Kolenbrander, P.E., Andersen, R.N., Baker, R.A., and Jenkinson, H.F., 1998, The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J. Bacteriol. 180: 290–295.

    PubMed  CAS  Google Scholar 

  • Krayl, M., Benndorf, D., Loffhagen, N., and Babel, W., 2003, Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3: 1544–1552.

    Article  PubMed  CAS  Google Scholar 

  • Kullik, I., Toledano, M.B., Tartaglia, L.A., and Storz, G., 1995, Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J. Bacteriol. 177: 1285–1291.

    PubMed  CAS  Google Scholar 

  • Lambert, L.A., Ashbire, K., Blankenhorn, D., and Slonczewski, J.L., 1997, Proteins induced in Escherichia coli by benzoic acid. J. Bacteriol. 179: 7595–7599.

    PubMed  CAS  Google Scholar 

  • Leblanc, L., Leboeuf, C., Leroi, F., Hartke, A., and Yanick, A., 2003, Comparison between NaCl tolerance response and acclimation to cold temperature in Shewanella putrefaciens. Curr. Microbiol. 46: 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Lee, S., Mi, Mukhopadhyay, P., Kim, S., Jun, Lee, S., Chul, Ahn, W.-S., Yu, M.-H., Storz, G., and Ryu, S., Eon, 2004, Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struc. Biol. 11: 1179–1185.

    Article  CAS  Google Scholar 

  • Lee, J.-W., and Helmann, J.D., 2006, The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440: 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Lesniak, J., Barton, W.A., and Nikolov, D.B., 2002, Structural and functional characterization of the Pseudomonas hydroperoxide resistance protein Ohr. EMBO J. 21: 6649–6659.

    Article  PubMed  CAS  Google Scholar 

  • Lesniak, J., Barton, W.A., and Nikolov, D.B., 2003, Structural and functional features of the Escherichia coli hydroperoxide resistance protein OsmC. Protein Sci. 12: 2838–2843.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S.X., Athar, M., Lippai, I., Waldren, C., and Hei, T.K., 2001, Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc. Natl. Acad. Sci. USA 98: 1643–1648.

    Article  PubMed  CAS  Google Scholar 

  • Loo, C.Y., Mitrakul, K., Jaafar, S., Gyurko, C., Hughes, C.V., and Ganeshkumar, N., 2004, Role of a nosX homolog in Streptococcus gordonii in aerobic growth and biofilm formation. J. Bacteriol. 186: 8183–8206.

    Article  CAS  Google Scholar 

  • Loprasert, S., Artichartpongkun, S., Whangsuk, W., and Mongkolsuk, S., 1997, Isolation and analysis of the Xanthomonas alkyl hydroperoxide reductase and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX. J. Bacteriol. 179: 3944–3949.

    PubMed  CAS  Google Scholar 

  • Loprasert, S., Fuangthong, M., Whangsuk, W., Atichartpongkun, S., and Mongkolsuk, S., 2000, Molecular and physiological analysis of an OxyR-regulated ahpC promoter in Xanthomonas campestris pv. phaseoli. Mol. Microbiol. 37: 1504–1514.

    Article  PubMed  CAS  Google Scholar 

  • Loprasert, S., Sallabhan, R., Whangsuk, W., and Mongkolsuk, S., 2003, Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Arch. Microbiol. 180: 498–502.

    Article  PubMed  CAS  Google Scholar 

  • Loprasert, S., Whangsuk, W., Sallabhan, R., and Mongkolsuk, S., 2004, DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch. Microbio.l 182: 96–101.

    Article  CAS  Google Scholar 

  • Lundström, A.M., and Bolin, I., 2000, A 26kDa protein of Helicobacter pylori shows alkyl hydroperoxide reductase (AhpC) activity and the mono-cistronic transcription of the gene is affected by pH. Microb. Patho.g 29: 257–266.

    Article  CAS  Google Scholar 

  • Lundström, A.M., Sundaeus, V., and Bolin, I., 2001, The 26-kilodalton, AhpC homologue, of Helicobacter pylori is also produced by other Helicobacter species. Helicobacter 6: 44–54.

    Article  PubMed  Google Scholar 

  • Maalej, S., Dammak, I., and Dukan, S., 2006, The impairment of superoxide dismutase coordinates the derepression of the PerR regulon in the response of Staphylococcus aureus to HOCl stress. Microbiol. 152: 855–861.

    Article  CAS  Google Scholar 

  • Majdalani, N., and Gottesman, S., 2005, The Rcs phosphorelay: a complex signal transduction system. Ann. Rev. Microbiol. 59: 379–405.

    Article  CAS  Google Scholar 

  • Manca, C., Paul, S., Barry, C.E.I., Freedman, V.H., and Kaplan, G., 1999, Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67: 74–79.

    PubMed  CAS  Google Scholar 

  • Maness, P.-C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J., and Jacoby, W.A., 1999, Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65: 4094–4098.

    PubMed  CAS  Google Scholar 

  • Master, S.S., Springer, B., Sander, P., Boettger, E.C., Deretic, V., and Timmins, G.S., 2002, Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiol. 148: 3139–3144.

    CAS  Google Scholar 

  • Meunier-Jamin, C., Kapp, U., Leonard, G.A., and McSweeney, S., 2004, The structure of the organic hydroperoxide resistance protein from Deinococcus radiodurans. Do conformational changes facilitate recycling of the redox disulfide. J. Biol. Chem. 279: 25830–25837.

    Article  PubMed  CAS  Google Scholar 

  • Michan, C., Manchado, M., Dorado, G., and Pueyo, C., 1999, In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress. J. Bacteriol. 181: 2759–2764.

    PubMed  CAS  Google Scholar 

  • Mongkolsuk, S., and Helmann, J., D., 2002, Regulation of inducible peroxide stress responses. Mol. Microbiol. 45: 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Mongkolsuk, S., Loprasert, S., Whangsuk, W., Fuangthong, M., and Atichartpongkun, S., 1997, Characterization of transcription organization and analysis of unique expression patterns of an alkyl hydroperoxide reductase C gene (ahpC) and the peroxide regulator operon ahpF-oxyR-orfX from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 179: 3950–3955.

    PubMed  CAS  Google Scholar 

  • Mongkolsuk, S., Praituan, W., Loprasert, S., Fuangthong, M., and Chamnongpol, S., 1998a, Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 180: 2636–2643.

    CAS  Google Scholar 

  • Mongkolsuk, S., Sukchawalit, R., Loprasert, S., Praituan, W., and Upaichit, A., 1998b, Construction and physiological analysis of a Xanthomonas mutant to examine the role of the oxyR gene in oxidant-induced protection against peroxide killing. J. Bacteriol. 180: 3988–3991.

    CAS  Google Scholar 

  • Mongkolsuk, S., Whangsuk, W., Fuangthong, M., and Loprasert, S., 2000a, Mutations in oxyR resulting in peroxide resistance in Xanthomonas campestris. J. Bacteriol. 182: 3846–3849.

    Article  CAS  Google Scholar 

  • Mongkolsuk, S., Whangsuk, W., Vattanaviboon, P., Loprasert, S., and Fuangthong, M., 2000b, A Xanthomonas alkyl hydroperoxide reductase subunit C (ahpC) mutant showed an altered peroxide stress response and complex regulation of the compensatory response of peroxide detoxification enzymes. J. Bacteriol. 182: 6845–6849.

    Article  CAS  Google Scholar 

  • Morgan, R.W., Christman, M.F., Jacobson, F.S., Storz, G., and Ames, B.M., 1986, Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. USA 83: 8059–8063.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey, J.A., Cockayne, A., Brummell, K., and Williams, P., 2004, The staphylococcal ferritins are differentially regulated in response to iron and manganese and via PerR and Fur. Infect. Immun. 72: 972–979.

    Article  PubMed  CAS  Google Scholar 

  • Mostertz, J., Scharf, C., Hecker, M., and Homuth, G., 2004, Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiol. 150: 497–512.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., Miller, R.D., and Summersgill, J.T., 2004, Analysis of altered protein expression patterns of Chlamydia pneumoniae by an integrated proteome-works system. J. Proteome Res. 3: 878–883.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C., and Shiloh, M.U., 2000, Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97: 8841–8848.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.B., and Lin, R., 1995, Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Ann. Rev. Microbiol. 49: 747–775.

    Article  CAS  Google Scholar 

  • Ochsner, U.A., Hassett, D.J., and Vasil, M.L., 2001, Genetic and physiological characterization of ohr, encoding a protein involved in organic hydroperoxide resistance in Pseudomonas aeruginosa. J. Bacteriol. 183: 773–778.

    Article  PubMed  CAS  Google Scholar 

  • Ochsner, U.A., Vasil, M.L., Eyad, A., Kislay, P., and Hassett, D.J., 2000, Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J. Bacteriol. 182: 4533–44.

    Article  PubMed  CAS  Google Scholar 

  • Ohara, N., Kikuchi, Y., Shoji, M., Naito, M., and Nakayama, K., 2006, Superoxide dismutase-encoding gene of the obligate anaerobe Porphyromonas gingivalis is regulated by the redox-sensing transcription activator OxyR. Microbiol. 152: 955–966.

    Article  CAS  Google Scholar 

  • Okano, S., Shibata, Y., Shiroza, T., and Abiko, Y., 2006, Proteomics-based analysis of a counter-oxidative stress system in Porphyromonas gingivalis. Proteomics 6: 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Olczak, A.A., Olson, J.W., and Maier, R.J., 2002, Oxidative-stress resistance mutants of Helicobacter pylori. J. Bacteriol. 184: 3186–3193.

    Article  PubMed  CAS  Google Scholar 

  • Olczak, A.A., Seyler, R.W., Olson, J.W., and Maier, R.J., 2003, Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect. Immun. 71: 580–583.

    Article  PubMed  CAS  Google Scholar 

  • Old, I.G., Phillips, S.E.V., Stockley, P.G., and Saint Girons, I., 1991, Regulation of methionine biosynthesis in the Enterobacteriaceae. Prog. Biophys. Mol. Biol. 56: 145–185.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, M.A., Guimares, B.G., Cussiol, J.R.R., Medrano, F.J., Gozzo, F.C., and Netto, L.E.S., 2006, Structural insights into enzyme-substrate interaction and characterization of enzymatic intermediates of organic hydroperoxide resistance protein from Xylella fastidiosa. J. Mol. Biol. 359: 433–435.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, I., Reitan, L.J., Holstad, G., and Wiker, H.G., 2000, Alkyl hydroperoxide reductases C and D are major antigens constitutively expressed by Mycobacterium avium subsp. paratuberculosis. Infect. Immun. 68: 801–808.

    Article  CAS  Google Scholar 

  • Olsen, I., Tryland, M., Wiker, H.G., and Reitan, L.J., 2001, AhpC, AhpD, and a secreted 14-kilodalton antigen from Mycobacterium avium subsp. paratuberculosis distinguish between paratuberculosis and bovine tuberculosis in an enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 8: 797–801.

    PubMed  CAS  Google Scholar 

  • Oram, D., Marra, Avdalovic, A., and Holmes, R.K., 2002, Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J. Bacteriol. 184: 5723–5732.

    Article  CAS  Google Scholar 

  • Pagan-Ramos, E., Master, S.S., Pritchett, C.L., Reimschuessel, R., Trucksis, M., Timmins, G.S., and Deretic, V., 2006, Molecular and physiological effects of mycobacterial oxyR inactivation. J. Bacteriol. 188: 2674–2680.

    Article  PubMed  CAS  Google Scholar 

  • Pagan-Ramos, E., Song, J., McFalone, M., Mudd, M.H., and Deretic, V., 1998, Oxidative stress response and characterization of the oxyR-ahpC and furA-katG loci in Mycobacterium marinum. J. Bacteriol. 180: 4856–4864.

    PubMed  CAS  Google Scholar 

  • Paget, M.S., and Buttner, M.J., 2003, Thiol-based regulatory switches. Ann. Rev. Genet. 37: 91–121.

    Article  PubMed  CAS  Google Scholar 

  • Panmanee, W., Vattanaviboon, P., Eiamphungporn, W., Whangsuk, W., Sallabhan, R., and Mongkolsuk, S., 2002, OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol. Microbiol. 45: 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  • Panmanee, W., Vattanaviboon, P., Poole, L.B., and Mongkolsuk, S., 2006, Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. J. Bacteriol. 188: 1389–1395.

    Article  PubMed  CAS  Google Scholar 

  • Park, S., You, X., and Imlay, J.A., 2005, Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 102: 9317–9322.

    Article  PubMed  CAS  Google Scholar 

  • Parsonage, D., Youngblood, D.S., Ganapathy, N.S., Wood, Z.A., Karpus, A.P., and Poole, L.B., 2005, Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44: 10583–10592.

    Article  PubMed  CAS  Google Scholar 

  • Pomposiello, P.J., and Demple, B., 2002, Global adjustment of microbial physiology during free radical stress. Adv. Microb. Physiol. 46: 319–341.

    Article  PubMed  CAS  Google Scholar 

  • Poole, L.B., Higuchi, M., Shimada, M., Calzi, M., Li, and Kamio, Y., 2000a, Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Free Rad. Biol. Med. 28: 108–120.

    Article  CAS  Google Scholar 

  • Poole, L.B., Reynolds, C.M., Wood, Z.A., Karpus, A.P., Ellis, H.R., and Li Calzi, M., 2000b, AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. Eur. J. Biochem. 267: 6126–6133.

    Article  CAS  Google Scholar 

  • Pym, A.S., Domenech, P., Honore, N., Song, J., Deretic, V., and Cole, S.T., 2001, Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol. Microbiol. 40: 879–889.

    Article  PubMed  CAS  Google Scholar 

  • Rahav-Manor, O., Carmel, O., Karpel, R., Taglicht, D., Glaser, G., Schuldiner, S., and Padan, E., 1992, NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J. Biol. Chem. 267: 10433–10438.

    PubMed  CAS  Google Scholar 

  • Rankin, S., Li, Z., and Isberg, R.R., 2002, Macrophage-induced genes of Legionella pneumophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect. Immun. 70: 3637–3648.

    Article  PubMed  CAS  Google Scholar 

  • Rehse, P.H., Ohshima, N., Nodake, Y., and Tahirov, T.H., 2004, Crystallographic structure and biochemical analysis of the Thermus thermophilus osmotically inducible protein C. J. Mol. Biol. 338: 959–968.

    Article  PubMed  CAS  Google Scholar 

  • Rho, B.-S., Hung, L.-W., Holton, J.M., Vigil, D., Kim, S.-I., Park, M.S., Terwillinger, T.C., and Pedelacq, J.-D., 2006, Functional and Structural Characterization of a Thiol Peroxidase from Mycobacterium tuberculosis. J. Mol. Biol. 361: 850–863.

    Article  PubMed  CAS  Google Scholar 

  • Rickman, L., Scott, C., Hunt, D.M., Hutchinson, T., Menendez, M.C., Whalan, R., Hinds, J., Colston, M.J., Green, J., and Buxton, R.S., 2005, A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol. Microbiol. 56: 1274–1286.

    Article  PubMed  CAS  Google Scholar 

  • Rince, A., Giard, J.-C., Pichereau, V., Flahaut, S., and Auffray, Y., 2001, Identification and characterization of gsp65, an organic hydroperoxide resistance (ohr) gene encoding a general stress protein in Enterococcus faecalis. J. Bacteriol. 183: 1482–1488.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, E.R., Owens, G.J., and Smith, C.J., 2000, The redox-sensitive transcriptional activator OxyR regulates the peroxide response regulon in the obligate anaerobe Bacteroides fragilis. J. Bacteriol. 182: 5059–5069.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, E.R., and Smith, C.J., 1998, Characterization of a peroxide-resistant mutant of the anaerobic bacterium Bacteroides fragilis. J. Bacteriol. 180: 5906–5912.

    PubMed  CAS  Google Scholar 

  • Rocha, E.R., and Smith, C.J., 1999, Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis. J. Bacteriol. 181: 5701–5710.

    PubMed  CAS  Google Scholar 

  • Rosenkrands, I., King, A., Weldingh, K., Moniatte, M., Moertz, E., and Andersen, P., 2000a, Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 21: 3740–3756.

    Article  CAS  Google Scholar 

  • Rosenkrands, I., Weldingh, K., Jacobsen, S., Hansen, C.V., Florio, W., Gianetri, I., and Andersen, P., 2000b, Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21: 935–48.

    Article  CAS  Google Scholar 

  • Rozwarski, D.A., Grant, G.A., Barton, D.H.R., Jacobs, W.R.J., and Sacchettini, J.C., 1998, Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279: 98–102.

    Article  PubMed  CAS  Google Scholar 

  • Schell, M.A., 1993, Molecular biology of the LysR family of transcriptional regulators. Ann. Rev. Microbiol. 47: 597–626.

    Article  CAS  Google Scholar 

  • Seaver, L.C., and Imlay, J.A., 2001, Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183: 7173–7181.

    Article  PubMed  CAS  Google Scholar 

  • Semchyshyn, H., Bagnyukova, T., Storey, K., and Storey, V., 2005, Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol. Int. 70: 424–431.

    CAS  Google Scholar 

  • Shao, F., Bader, M.W., Jalob, U., and Bardwell, J.C.A., 2000, DsbG, a protein disulfide isomerase with chaperone activity. J. Biol. Chem. 275: 13349–13352.

    Article  PubMed  CAS  Google Scholar 

  • Shea, R.J., and Mulks, M.H., 2002, ohr, Encoding an organic hydroperoxide reductase, is an in vivo-induced gene in Actinobacillus pleuropneumoniae. Infect. Immun. 70: 794–802.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, D.R., Mdhluli, K., Hickey, M.J., Arain, T.M., M., M.S., Barry, C.E.I., and Stover, C.K., 1996, Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272: 1641–1643.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, D.R., Mdhluli, K., Hickey, M.J., Barry, C.E.I., and Stover, C.K., 1999, AhpC, oxidative stress and drug resistance in Mycobacterium tuberculosis. Biofactors 10: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, D.R., Sabo, P.J., Hickey, M.J., Arain, T.M., Mahairas, G.G., Yuan, Y., Barry, C.E.I., and Stover, C.K., 1995, Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc. Natl. Acad. Sci. USA 92: 6625–6629.

    Article  PubMed  CAS  Google Scholar 

  • Shi, S., and Ehrt, S., 2006, Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect. Immun. 74: 56–63.

    Article  PubMed  CAS  Google Scholar 

  • Shin, D.H., Choi, I.-G., Busso, D., Jancarik, J., Yokota, H., Kim, R., and Kim, S.-H., 2004, Structure of OsmC from Escherichia coli: a salt-shock-induced protein. Acta Crystallogr. D Biol. Crystallogr. 60: 903–911.

    Article  PubMed  CAS  Google Scholar 

  • Slonczewski, J.L., Mcgee, D.J., Phillips, J., Kirkpatrick, C., and Mobley, H.L.T., 2000, pH-dependent protein profiles of Helicobacter pylori analyzed by two-dimensional gels. Helicobacter 5: 240–247.

    Article  PubMed  CAS  Google Scholar 

  • Spatafora, G., Van Hoeven, N., Wagner, K., and Fives-Taylor, P., 2002, Evidence that ORF3 at the Streptococcus parasanguis fimA locus encodes a thiol-specific antioxidant. Microbiol. 148: 755–762.

    CAS  Google Scholar 

  • Springer, B., Sander, P., Zahrt, T., McFalone, M., Song, J., Papavinasasundaram, K.G., Colston, M.J., Boettger, E., and Deretic, V., 2001, Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation. Infect. Immun. 69: 5967–5973.

    Article  PubMed  CAS  Google Scholar 

  • Stancik, L.M., Stancik, D.M., Schmidt, B., Barnhart, D.M., Yoncheva, Y., N., and Slonczewski, J.L., 2002, pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184: 4246–4258.

    Article  PubMed  CAS  Google Scholar 

  • Staudinger, B.J., Oberdoerster, M.A., Lewis, P.J., and Rosen, H., 2002, mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J. Clin. Invest. 110: 1151–1163.

    PubMed  CAS  Google Scholar 

  • Storz, G., Christman, M.F., Sies, H., and Ames, B.M., 1987, Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 84: 8917–8921.

    Article  PubMed  CAS  Google Scholar 

  • Storz, G., Jacobson, F.S., Tartaglia, L.A., Morgan, R.W., Silveira, L.A., and Ames, B.M., 1989, An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J. Bacteriol. 171: 2049–2055.

    PubMed  CAS  Google Scholar 

  • Storz, G., Tartaglia, L.A., and Ames, B.M., 1990, Transcriptional regulator of oxidative stress inducible genes: direct activation by oxidation. Science 248: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Storz, G., and Zheng, M., 2000, Oxidative stress, in Bacterial stress responses (torz, G. and Hengge-Aronis, R., eds.), American Society for Microbiology Press, Washington, DC, USA, pp. 47–59.

    Google Scholar 

  • Sturny, R., Cam, K., Gutierrez, C., and Conter, A., 2003, NhaR and RcsB independently regulate the osmCp1 promoter of Escherichia coli at overlapping regulatory sites. J. Bacteriol. 185: 4298–4304.

    Article  PubMed  CAS  Google Scholar 

  • Sukchawalit, R., Loprasert, S., Atichartpongkun, S., and Mongkolsuk, S., 2001, Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications. J. Bacteriol. 183: 4405–4412.

    Article  PubMed  CAS  Google Scholar 

  • Tai, S.S., and Zhu, Y., Yi, 1995, Cloning of a Corynebacterium diphtheriae iron-repressible gene that shares sequence homology with the AhpC subunit of alkyl hydroperoxide reductase of Salmonella typhimurium. J. Bacteriol. 177: 3512–3517.

    PubMed  CAS  Google Scholar 

  • Tartaglia, L.A., Storz, G., and Ames, B.M., 1989, Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J. Mol. Biol. 210: 709–719.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A., and Ames, B.M., 1990, Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265: 10535–10540.

    PubMed  CAS  Google Scholar 

  • Taylor, P.D., Inchley, C.J., and Gallagher, M.P., 1998, The Salmonella typhimurium AhpC polypeptide is not essential for virulence in BALB/c mice but is recognized as an antigen during infection. Infect. Immun. 66: 3207–3217.

    Google Scholar 

  • Tellez-Sosa, J., Soberon, N., Vega-Segura, A., Torres-Marquez, M.E., and Cevallos, M.A., 2002, The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J. Bacteriol. 184: 3560–3568.

    Article  PubMed  CAS  Google Scholar 

  • Toesca, I., Perard, C., Bouvier, J., Gutierrez, C., and Conter, A., 2001, The transcriptional activator NhaR is responsible for the osmotic induction of osmC(P1), a promoter of the stress-inducible gene osmC in Escherichia coli. Microbiol. 147: 2795–2803.

    CAS  Google Scholar 

  • Toledano, M.B., Kullik, I., Trinh, F., Baird, P.T., Schneider, T.D., and Storz, G., 1994, Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78: 897–909.

    Article  PubMed  CAS  Google Scholar 

  • van Vliet, A.H.M., Baillon, M.-L.A., Penn, C.W., and Ketley, J.M., 1999, Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J. Bacteriol. 181: 6371–6376.

    PubMed  Google Scholar 

  • Vattanaviboon, P., Whangsuk, W., Panmanee, W., Klomsiri, C., Dharmsthiti, S., and Mongkolsuk, S., 2002, Evaluation of the roles that alkyl hydroperoxide reductase and Ohr play in organic peroxide-induced gene expression and protection against organic peroxides in Xanthomonas campestris. Biochem. Biophys. Res. Commun. 299: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Verneuil, N., Le Breton, Y., Hartke, A., Auffray, Y., and Giard, J.-C., 2004a, Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait. 84: 69–76.

    Article  CAS  Google Scholar 

  • Verneuil, N., Sanguinetti, M., Le Breton, Y., Posteraro, B., Fadda, G., Auffray, Y., Hartke, A., and Giard, J.-C., 2004b, Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect. Immun. 72: 4424–4431.

    Article  CAS  Google Scholar 

  • Verneuil, N., Rince, A., Sanguinetti, M., Auffray, Y., Hartke, A., and Giard, J.-C., 2005, Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol. Let.t 252: 137–141.

    Article  CAS  Google Scholar 

  • Volker, U., Maul, B., and Hecker, M., 1998, One of two osmC homologs in Bacillus subtilis is part of the sigmaB-dependent general stress regulon. J. Bacteriol. 180: 4212–4218.

    PubMed  CAS  Google Scholar 

  • Wan, X.-Y., Zhou, Y., Yan, Z.-Y., Wang, H.-L., Hou, Y.-D., and Jin, D.-Y., 1997, Scavengase p20: a novel family of bacterial antioxidant enzymes. FEBS Lett. 407: 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Conover, R.C., Benoit, S., Olczak, A.A., Olson, J.W., Johnson, M.K., and Maier, R.J., 2004, Role of a bacterial organic hydroperoxide detoxification system in preventing catalase inactivation. J. Biol. Chem. 279: 51908–51914.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Conover, R.C., Olczak, A.A., Alamuri, P., Johnson, M.K., and Maier, R.J., 2005, Oxidative stress defense mechanisms to counter iron-promoted DNA damage in Helicobacter pylori. Free Rad. Res. 39: 1183–1191.

    Article  CAS  Google Scholar 

  • Wang, G., and P., D.M., 1998, Heat shock response enhances acid tolerance of Escherichia coli O157:H7. Lett Appl Microbiol 26: 31–34.

    Google Scholar 

  • Weldingh, K., Rosenkrands, I., Jacobsen, S., Rasmussen, P.B., Elhay, M.J., and Andersen, P., 1998, Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect. Immun. 66: 3492–3500.

    PubMed  CAS  Google Scholar 

  • Wilkinson, S.P., and Grove, A., 2006, Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr. Issues Mol. Biol. 8: 51–62.

    PubMed  Google Scholar 

  • Williams, C.H., Arscott, L.D., Müller, S., Lennon, B.W., Ludwig, M.L., Wang, P.-F., Veine, D.M., Becker, K., and Schirmer, R.H., 2000, Thioredoxin reductase two modes of catalysis have evolved. Eur. J. Biochem. 267: 6110–6117.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T., de lisle, G.W., Marcinkeviciene, J.A., Blanchard, J.S., and Collins, D.M., 1998, Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiol. 144: 2687–2695.

    Article  CAS  Google Scholar 

  • Windle, H.J., Ang, Y.S., Athie-Morales, V., McManus, R., and Kelleher, D., 2006, Human peripheral and gastric lymphocyte responses to Helicobacter pylori NapA and AhpC differ in infected and uninfected individuals. Gut 54: 25–32.

    Article  CAS  Google Scholar 

  • Wood, Z.A., Poole, L.B., Hantgan, R.R., and Karpus, A.P., 2002, Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41: 5493–5504.

    Article  PubMed  CAS  Google Scholar 

  • Wood, Z.A., Schroeder, E., Harris, J.R., and Poole, L.B., 2003, Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, R., Matsuo, K., Yamazaki, A., Takahashi, M., Fukasawa, Y., Wada, M., and Abe, C., 1992, Cloning and expression of the gene for the Avi-3 antigen of Mycobacterium avium and mapping of its epitopes. Infect. Immun. 60: 1210–1216.

    PubMed  CAS  Google Scholar 

  • Yamamoto, Y., 2000a, Molecular biology of oxygen tolerance in lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress. Biosci Biotech Biochem 90: 484–493.

    Google Scholar 

  • Yamamoto, Y., Higuchi, M., Poole, L.B., and Kamio, Y., 2000b, Role of the dpr product in oxygen tolerance in Streptococcus mutans. J. Bacteriol. 182: 3740–3747.

    Article  CAS  Google Scholar 

  • Zarht, T.C., and Deretic, V., 2002, Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid. Redox Signal. 4: 141–159.

    Article  Google Scholar 

  • Zhang, Y., Dhandayuthapani, S., and Deretic, V., 1996, Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc. Natl. Acad. Sci. USA 93: 13212–13216.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Heym, B., Allen, B., Young, D., and Cole, S., 1992, The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591–593.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Yu, H., Yu, S., Wang, F., Sacchettini, J.C., and Magliozzo, R.S., 2006, Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry 45: 4131–4140.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., Aslund, F., and Storz, G., 1998, Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718–1721.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., and Storz, G., 2000, Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol. 59: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., Wang, X., Doan, B., Lewis, K.A., and Schneider, T.D., 2001a, Computation-directed identification of OxyR DNA binding sites in Escherichia coli. J. Bacteriol. 183: 4571–4591.

    Article  CAS  Google Scholar 

  • Zheng, M., Wang, X., Templeton, L.J., Smulski, D.R., LaRossa, R.A., and Storz, G., 2001b, DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183: 4562–4570.

    Article  CAS  Google Scholar 

  • Zhou, Y., Wan, X.-Y., Wang, H.-L., Yan, Z.-Y., Hou, Y.-D., and Jin, D.-Y., 1997, Bacterial scavengase p20 is structurally and functionally related to peroxiredoxins. Biochem. Biophys. Res. Commun. 233: 848–852.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Dubbs, J.M., Mongkolsuk, S. (2007). Peroxiredoxins in Bacterial Antioxidant Defense. In: Flohé, L., Harris, J.R. (eds) Peroxiredoxin Systems. Subcellular Biochemistry, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6051-9_7

Download citation

Publish with us

Policies and ethics