Skip to main content

Mitochondrial Peroxiredoxins

Structure and function

  • Chapter
Peroxiredoxin Systems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 44))

Abstract

Mitochondria are the major intracellular sites of oxygen consumption producing reactive oxygen species (ROS) as toxic by-products of oxidative phosphorylation, primarily via electron leakage from the respiratory chain. The resultant types of chemical damage to lipids, DNA and proteins are described as well as the broader implications for the involvement of ROS in disease onset and progression. The relative contributions of mitochondrial, enzyme-linked, antioxidant defence systems to tissue protection are also reviewed as is the emerging importance of the peroxiredoxin family in general to H2O2-mediated signalling

The constituent enzymes of the mitochondrial PrxIII pathway are discussed in detail including the roles of PrxIII and PrxV in their capacities as typical 2-cys and atypical 2-cys thioredoxin-dependent hydroperoxide reductases, respectively. The structures and catalytic mechanisms of PrxIII and V are examined and some key properties of the reconstituted mitochondrial PrxIII pathway are highlighted with specific reference to the susceptibility of peroxiredoxins to inactivation at elevated H2O2 levels and their potential for participation in H2O2-mediated signalling responses. It is concluded that mitochondrial Prxs form a vital link in an integrated cellular antioxidant defence network that minimises ROS-mediated damage and ensures that cells mount appropriate responses to increased levels of oxidative stress via the upregulation of key cell signalling pathways

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki, M., Nanri, H., Ejima, K., Murasato, Y., Fujiwara, T., Nakashima, Y. and Ikeda, M., 1999, Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J. Biol. Chem. 274: 2271–2278.

    Article  PubMed  CAS  Google Scholar 

  • Arscott, L. D., Gromer, S., Schirmer, R. H., Becker, K., Williams, C. H., Jr., 1997, The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc. Natl. Acad. Sci. USA 94: 3621–3626.

    Article  PubMed  CAS  Google Scholar 

  • Aust, A. E., Eveleigh, J. F., 1999, Mechanisms of DNA oxidation. Proc. Soc. Exp. Biol. Med. 222: 246–252.

    Article  PubMed  CAS  Google Scholar 

  • Banmeyer, I., Marchand, C., Clippe, A., Knoops, B., 2005, Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Lett. 579: 2327–2333.

    Article  PubMed  CAS  Google Scholar 

  • Berlett, B.S., Stadtman, E.R., 1997, Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313–20316.

    Article  PubMed  CAS  Google Scholar 

  • Biteau, B., Labarre, J., Toledano, M. B., 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425: 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Bodenstein, J., Follmann, H., 1991, Characterization of two thioredoxins in pig heart including a new mitochondrial protein. Z. Naturforsch. [C] 46: 270–279.

    CAS  Google Scholar 

  • Brigelius-Flohé, R., 1999, Tissue-specific functions of individual glutathione peroxidases. Free Radi. Biol. Med. 27: 951–965.

    Article  Google Scholar 

  • Bryk, R., Griffin, P., Nathan, C., 2000, Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Bushmarina, N.A., Blanchet, C.E., Vernier, G., Forge, V., 2006, Cofactor effects on the protein folding reaction: acceleration of alpha-lactalbumin refolding by metal ions. Protein Sci. 15: 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol, E., Piulats, E., Echave, P., Herrero, E., Ros, J., 2000, Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393–27398.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., Davies, K.J., 2000, Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29: 222–230.

    Article  PubMed  CAS  Google Scholar 

  • Calabrese, V., Scapagnini, G., Ravagna, A., Fariello, R.G., Giuffrida, S.A.M. Abraham, N.G., 2002, Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance. J. Neurosci. Res. 68: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Cao, Z., Roszak, A.W., Gourlay, L.J., Lindsay, J.G., Isaacs, N.W., 2005, Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure (Camb) 13: 1661–1664.

    Article  CAS  Google Scholar 

  • Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J.B., Pierce, W.M., Booze, R., Markesbery, W.R., Butterfield, D.A. (2002). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J. Neurochem. 82: 1524–1532.

    Article  PubMed  CAS  Google Scholar 

  • Chae, H.Z., Kim, H.J., Kang, S.W., Rhee, S. G., 1999, Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res. Clin. Pract. 45: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Chang, T.S., Cho, C.S., Park, S., Yu, S., Kang, S.W., Rhee, S.G., 2004, Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279: 41975–41984.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Cai, J., Murphy, T.J, Jones, D.P., 2002, Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J. Biol. Chem. 277: 33242–33248.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M., Jakupoglu, C., Moreno, S.G., Lippl, S., Banjac, A., Schneider, M., Beck, H., Hatzopoulos, A. K., Just, U., Sinowatz, F., Schmahl, W., Chien, K.R., Wurst, W., Bornkamm, G.W., Brielmeier, M., 2004, Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell Biol. 24: 9414–9423.

    Article  PubMed  CAS  Google Scholar 

  • Damdimopoulos, A.E., Miranda-Vizuete, A., Pelto-Huikko, M., Gustafsson, J.A., Spyrou, G., 2002, Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J. Biol. Chem. 277: 33249–33257.

    Article  PubMed  CAS  Google Scholar 

  • de Haan, J.B., Bladier, C., Griffiths, P., Kelner, M., O’Shea, R.D., Cheung, N.S., Bronson, R.T., Silvestro, M.J., Wild, S., Zheng, S.S., Beart, P.M., Hertzog, P. J., Kola, I., 1998, Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273: 22528–22536.

    Article  PubMed  Google Scholar 

  • Delano, W.L., 2002, The PyMOL Molecular Graphics System, Delano Scientific, San Carlos, CA, USA.

    Google Scholar 

  • Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R., Koppenol, W.H., Rees, J.F., Knoops, B., 2004, Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 571: 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H., Schaur, R.J., Zollner, H., 1991, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11: 81–128.

    Article  PubMed  CAS  Google Scholar 

  • Esteve, J.M., Mompo, J., Garcia de la Asuncion, J., Sastre, J., Asensi, M., Boix, J., Vina, J.R., Vina, J., Pallardo, F.V., 1999, Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro. FASEB J. 13: 1055–1064.

    PubMed  CAS  Google Scholar 

  • Evrard, C., Capron, A., Marchand, C., Clippe, A., Wattiez, R., Soumillion, P., Knoops, B., Declercq, J.P., 2004, Crystal structure of a dimeric oxidized form of human peroxiredoxin 5. J. Mol. Biol. 337: 1079–1090.

    Article  PubMed  CAS  Google Scholar 

  • Floyd, R.A., 1999, Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med. 222: 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Gasdaska, P.Y., Gasdaska, J.R., Cochran, S., Powis, G., 1995, Cloning and sequencing of a human thioredoxin reductase. FEBS Lett. 373: 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Gazaryan, I.G., Krasnikov, BF., Ashby, G.A., Thorneley, R.N., Kristal, B.S., Brown, A.M., 2002, Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J. Biol. Chem. 277: 10064–10072.

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki, Y., Melamed, E. and Offen, D., 2001, Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40: 959–975.

    Article  PubMed  CAS  Google Scholar 

  • Gorog, D.A., Ahmed, N., Davies, G.J., 2002, Elevated plasma lipid peroxide levels in angina pectoris and myocardial infarction. Cardiovasc. Pathol. 11: 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Gourlay, L.J., Bhella, D., Kelly, S.M., Price, N.C., Lindsay, J.G., 2003, Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). A mitochondrial 2-CYS peroxiredoxin organized as a decameric toroid. J. Biol. Chem. 278: 32631–32637.

    Article  PubMed  CAS  Google Scholar 

  • Green, D.R., Reed, J. C., 1998, Mitochondria and apoptosis. Science 281: 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Guimaraes, B.G., Souchon, H., Honore, N., Saint-Joanis, B., Brosch, R., Shepard, W., Cole, S.T., Alzari, P.M., 2005, Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress. J. Biol. Chem. 280: 25735–25742.

    Article  PubMed  CAS  Google Scholar 

  • Han, S.H., Jeon, J.H., Ju, H.R., Jung, U., Kim, K.Y., Yoo, H.S., Lee, Y.H., Song, K.S., Hwang, H.M., Na, Y.S., Yang, Y., Lee, K.N., Choi, I., 2003, VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22: 4035–4046.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, F., Murayama, N., Noshita, T., Oikawa, S., 2003, Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J. Neurochem. 86: 860–868.

    Article  PubMed  CAS  Google Scholar 

  • Henle, E.S., Linn, S., 1997, Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 272: 19095–19098.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, N., Fujii, M., Hartman, P. S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D., Suzuki, K.,1998, A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394: 694–607.

    Article  PubMed  CAS  Google Scholar 

  • Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., Choi, Y.O., Kim, W.Y., Kang, J.S., Cheong, G.W., Yun, D.J., Rhee, S.G., Cho, M.J., Lee, S.Y., 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, W., Park, S.J., Chang, T.S., Lee, D.Y., Rhee, S.G., 2006, Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J. Biol. Chem. 281: 14400–14407.

    Article  PubMed  CAS  Google Scholar 

  • Junn, E., Han, S.H., Im, J.Y., Yang, Y., Cho, E.W., Um, H.D., Kim, D.K., Lee, K.W., Han, P.L., Rhee, S.G., Choi, I., 2000, Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 164: 6287–6295.

    PubMed  CAS  Google Scholar 

  • Kasai, H., Nishimura, S., Kurokawa, Y., Hayashi, Y., 1987, Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA. Carcinogenesis 8: 1959–1961.

    Article  PubMed  CAS  Google Scholar 

  • Knoops, B., Clippe, A., Bogard, C., Arsalane, K., Wattiez, R., Hermans, C., Duconseille, E., Falmagne, P., Bernard, A., 1999. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J. Biol. Chem. 274: 30451–30458.

    Article  PubMed  CAS  Google Scholar 

  • Kokoszka, J.E., Coskun, P., Esposito, L.A., Wallace, D.C., 2001, Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc. Natl. Acad. Sci. USA 98: 2278–2283.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., Reed, J.C., 2000, Mitochondrial control of cell death.. Nat. Med. 6: 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Lebovitz, R.M., Zhang, H., Vogel, H., Cartwright, J., Jr., Dionne, L., Lu, N., Huang, S., Matzuk, M.M., 1996, Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA 93: 9782–9787.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B.I., Kim, K.H., Park, S.J., Eom, S.H., Song, H.K., Suh, S.W., 2004, Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J. 23: 2029–3038.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.R., Kim, J.R., Kwon, K.S., Yoon, H.W., Levine, R.L., Ginsburg, A., Rhee, S.G., 1999, Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem. 274: 4722–4734.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Peterson, N.A., Kim, M.Y., Kim, C.Y., Hung, L.W., Yu, M., Lekin, T., Segelke, B.W., Lott, J.S., Baker, E.N., 2005). Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin. J. Mol. Biol. 346: 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., Wallace, D.C., Epstein, C.J., 1995, Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11: 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Loschen, G., Flohé, L., and Chance, B., 1971, Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett. 18: 261–264.

    Article  PubMed  CAS  Google Scholar 

  • Loschen, G., Azzi, A., Richter, Ch., and Flohé, L., 1974, Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42: 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Marnett, L.J., 1999, Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424(: 83–95.

    PubMed  CAS  Google Scholar 

  • Marnett, L.J., 2000, Oxyradicals and DNA damage. Carcinogenesis 2: 361–370.

    Article  Google Scholar 

  • Miranda-Vizuete, A., Damdimopoulos, A.E., Spyrou, G., 2000, The mitochondrial thioredoxin system. Antioxid. Redox. Signal. 2: 801–810.

    Article  PubMed  CAS  Google Scholar 

  • Munhoz, D.C., Netto, L.E., 2004. Cytosolic thioredoxin peroxidase I and II are important defenses of yeast against organic hydroperoxide insult: catalases and peroxiredoxins cooperate in the decomposition of H2O2 by yeast. J. Biol. Chem .279: 35219–35227.

    Article  PubMed  CAS  Google Scholar 

  • Newmeyer, D.D., Ferguson-Miller, S., 2003, Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112: 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, A., Matsui, M., Iwata, S., Hirota, K., Masutani, H., Nakamura, H., Takagi, Y., Sono, H., Gon, Y., Yodoi, J., 1999, Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 274: 21645–21650.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, A., Sugiura, Y., 2002, Contribution of individual zinc ligands to metal binding and peptide folding of zinc finger peptides. Inorg. Chem. 41: 3693–3698.

    Article  PubMed  CAS  Google Scholar 

  • Patwari, P., Higgins, L.J., Chutkow, W A., Yoshioka, J., Lee, R.T., 2006, The interaction of thioredoxin with Txnip: Evidence for formation of a mixed disulfide by disulfide exchange. J. Biol. Chem. 281: 21884–21891.

    Article  PubMed  CAS  Google Scholar 

  • Pedrajas, J.R., Miranda-Vizuete, A., Javanmardy, N., Gustafsson, J.A., Spyrou, G., 2000, Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J. Biol. Chem. 275: 16296–16301.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., Turrens, J.F., Chang, L.Y., Bush, K.M., Crapo, J.D., Freeman, B.A. 1991. Detection of catalase in rat heart mitochondria. J. Biol. Chem. 266: 22028–22034.

    PubMed  CAS  Google Scholar 

  • Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., Ichijo, H., 1998 Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17: 2596–2606.

    Article  PubMed  CAS  Google Scholar 

  • Sarma, G.N., Nickel, C., Rahlfs, S., Fischer, M., Becker, K., Karplus, P.A., 2005, Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J. Mol. Biol. 346: 1021–1034.

    Article  PubMed  CAS  Google Scholar 

  • Sayre, L.M., Perry, G., Atwood, C.S., Smith, M.A., 2000, The role of metals in neurodegenerative diseases. Cell. Mol. Biol. (Noisy-le-grand) 46: 731–741.

    CAS  Google Scholar 

  • Seo, M.S., Kang, S.W., Kim, K., Baines, I.C., Lee, T.H., Rhee, S.G., 2000, Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275: 20346–20354.

    Article  PubMed  CAS  Google Scholar 

  • Shibutani, S., Takeshita, M., Grollman, A.P., 1991, Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431–434.

    Article  PubMed  CAS  Google Scholar 

  • Spyrou, G., Enmark, E., Miranda-Vizuete, A., Gustafsson, J., 1997, Cloning and expression of a novel mammalian thioredoxin. J. Biol. Chem. 272: 2936–2941.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, E.R., Berlett, B.S., 1991, Fenton chemistry. Amino acid oxidation. J. Biol. Chem. 266: 17201–17211.

    PubMed  CAS  Google Scholar 

  • Stadtman, T.C., 1996, Selenocysteine. Ann. Rev. Biochem. 65: 83–100.

    Article  PubMed  CAS  Google Scholar 

  • Starkov, A.A., Fiskum, G., Chinopoulos, C., Lorenzo, B.J., Browne, S.E., Patel, M. S., Beal, M.F., 2004, Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24: 7779–7788.

    Article  PubMed  CAS  Google Scholar 

  • Tamarit, J., Cabiscol, E., Ros, J., 1998, Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J. Biol. Chem. 273: 3027–3032.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, T., Stadtman, T.C., 1996, A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA 93: 1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Tretter, L., Adam-Vizi, V., 2004, Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J. Neurosci. 24: 7771–7778.

    Article  PubMed  CAS  Google Scholar 

  • Turrens, J.F., 1997, Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17: 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Van Remmen, H., Williams, M.D., Guo, Z., Estlack, L., Yang, H., Carlson, E.J., Epstein, C.J., Huang, T.T., Richardson, A., 2001, Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis. Am. J. Physiol. Heart Circ. Physio.l 281: H1422–1432.

    Google Scholar 

  • Watabe, S., Hasegawa, H., Takimoto, K., Yamamoto, Y. and Takahashi, S.Y., 1995, Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease, as a radical scavenger. Biochem. Biophys. Res. Commun. 213: 1010–1016.

    Article  PubMed  CAS  Google Scholar 

  • Watabe, S., Hiroi, T., Yamamoto, Y., Fujioka, Y., Hasegawa, H., Yago, N., Takahashi, S.Y., 1997, SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur. J. Biochem. 249: 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Watabe, S., Kohno, H., Kouyama, H., Hiroi, T., Yago, N., Nakazawa, T., 1994, Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J. Biochem. (Tokyo) 115: 648–654.

    CAS  Google Scholar 

  • Wei, Y.H., Lee, H.C., 2002, Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. (Maywood) 227: 671–682.

    CAS  Google Scholar 

  • Wikoff, W.R., Liljas, L., Duda, R.L., Tsuruta, H., Hendrix, R.W. and Johnson, J.E., 200,. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289: 2129–2133.

    Google Scholar 

  • Wong, C.M., Siu, K.L., Jin, D.Y., 2004, Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279: 23207–23213.

    Article  PubMed  CAS  Google Scholar 

  • Wood, Z.A., Poole, L.B., Karplus, P.A., 2003, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650–653.

    Article  PubMed  CAS  Google Scholar 

  • Wood, Z. A., Schröder, E., Harris, J.R., Poole, L.B., 2003, Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L.Z., Dawson, P.E., 2001, Design and Synthesis of a Protein Catenane. Angew. Chem. Int. Ed. Engl. 40: 3625–3627.

    Article  PubMed  CAS  Google Scholar 

  • Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., Rhee, S.G., 2002, Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277: 38029–38036.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, L., Arn-er, E.S., Ljung, J., Aslund, F., Holmgren, A., 1998, Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J. Biol. Chem 273: 8581–8591.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., Kok, K.H., Chun, A.C., Wong, C.M., Wu, H.W., Lin, M.C., Fung, P.C., Kung, H., Jin, D.Y., 2000, Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochem. Biophys. Res. Commun. 268: 921–927.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Cao, Z., Lindsay, J.G., Isaacs, N.W. (2007). Mitochondrial Peroxiredoxins. In: Flohé, L., Harris, J.R. (eds) Peroxiredoxin Systems. Subcellular Biochemistry, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6051-9_14

Download citation

Publish with us

Policies and ethics