Skip to main content

Metabolic Engineering in Sugarcane: Assisting the Transition to a Bio-based Economy

  • Chapter
Applications of Plant Metabolic Engineering

Abstract

Sugarcane is a promising crop for sustainable production of biomaterials and biofuel feedstocks, as well as sugars for food. It is a highly efficient biomass producer under tropical and sub-tropical conditions. Tissue culture and genetic transformation systems are well established and applicable to diverse commercial genotypes. It has inbuilt genetic containment features. Many cultivars are sterile under the usual commercial growing conditions. Cultivars are vegetatively propagated and they do not persist without human cultivation. Early steps in extraction remove all proteins and nucleic acids from the major food product, sucrose. A key decision in development of sugarcane for commercial production of a novel material is whether to co-produce the material with sucrose, or as an alternative to sucrose. Logical materials for production in such a large-scale industrial crop are those required in large quantities, or those for which sugarcane has a particular advantage in terms of precursor metabolite pools. This chapter summarises progress, potentials and limitations in metabolic engineering of sugarcane for enhanced yield of sucrose, higher value sugars and sugar derivatives, sucrose-derived polymers, bioplastics, aromatic compounds and waxes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463–2480.

    PubMed  CAS  Google Scholar 

  • Allen C, Mackay M, Aylward J, Campbell J (1997) New technologies for sugar milling and by-product modification. In ‘Intensive Sugarcane Production: Meeting the Challenges Beyond 2000’. (Eds B Keating and J Wilson) pp. 267–285. (CAB International: Wallingford, UK).

    Google Scholar 

  • Arencibia AD, Carmona ER, Cornide MT, Castiglione S, O’Relly J, Chinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Research 8, 349–360.

    CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Research 7, 213–222.

    CAS  Google Scholar 

  • Bachmann R, Bastianelli E, Riese J, Schlenzka W (2000) Using plants as plants. The McKinsey Quarterly 2000, 93–99.

    Google Scholar 

  • Berding N (1981) Improved flowering and pollen fertility in sugarcane under increased night temperatures. Crop Science 21, 863–867.

    Google Scholar 

  • Bianchi G (1995) Plant waxes. In ‘Waxes: Chemistry, Molecular Biology and Functions’. (Ed. RJ Hamilton) pp.175–222. (The Oily Press: Dundee).

    Google Scholar 

  • Biotecnologìa CdIGy (2006) Fructan production in industrial reactors and transgenic sugarcane. http://gndp.cigb.edu.cu/Profiles/28%20CIGBFructooligasaccharides.htm

    Google Scholar 

  • Birch RG (1996) New gene technologies and their potential value for sugarcane. Outlook on Agriculture 25, 219–226.

    Google Scholar 

  • Birch RG, Bower R, Elliott A, Hansom S, Basnayake S, Zhang L (2000) Regulation of transgene expression: progress towards practical development in sugarcane, and implications for other plant species. In ‘Plant Genetic Engineering: Towards the Third Millenium’. (Ed. AD Arencibia) pp. 118–125. (Elsevier: Amsterdam).

    Google Scholar 

  • Birch RG, Bower R, Elliott AR, Potier BAM, Franks T, Cordeiro G (1996) Expression of foreign genes in sugarcane. In ‘Proceedings of the International Society of Sugarcane Technologists XXII Congress, Cartegena, September 1995’. (Eds JH Cock and T Brekelbaum) pp.368–373. (Tecnicana: Cali, Colombia).

    Google Scholar 

  • Birch RG, Potier BAM (2001) Sugarcane plant promoters to express heterologous nucleic acids. International Patent Specification WO 01/18211 A1.

    Google Scholar 

  • Birch RG, Wu L (2004) Method for increasing product yield. International Patent Specification WO 2004/099403 A1.

    Google Scholar 

  • Blacklock BJ, Jaworski JG (2002) Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases. European Journal of Biochemistry 269, 4789–4798.

    PubMed  CAS  Google Scholar 

  • Blacklock BJ, Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochemical and Biophysical Research Communications 346, 583–590.

    PubMed  CAS  Google Scholar 

  • Börnke F, Hajirezaei M, Heineke D, Melzer M, Herbers K, Sonnewald U (2002a) High-level production of the non-cariogenic sucrose isomer palatinose in transgenic tobacco plants strongly impairs development. Planta 214, 356–364.

    Google Scholar 

  • Börnke F, Hajirezaei M, Sonnewald U (2002b) Potato tubers as bioreactors for palatinose production. Journal of Biotechnology 96, 119–124.

    Google Scholar 

  • Botha FC, Groenewald JH (2001) Method for regulating or manipulating sucrose content and metabolism in sugar storing plants, e.g. increasing sucrose content, by regulating activity of pyrophosphate-dependent phosphofructokinase enzyme in plants. South Africa Patent Application ZA200101047-A 25Jul2001.

    Google Scholar 

  • Botha FC, Sawyer BJB, Birch RG (2001) Sucrose metabolism in the culm of transgenic sugarcane with reduced soluble acid invertase activity. In ‘Proceedings of the International Society of Sugarcane Technologists XXIV Congress, Brisbane, September 2001’. (Ed. DM Hogarth) pp.588–591. (ASSCT: Mackay).

    Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. The Plant Journal 2, 409–416.

    CAS  Google Scholar 

  • Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Molecular Breeding 2,239–249.

    CAS  Google Scholar 

  • Braga DPV, Arrigoni EDB, Silva Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). Journal of New Seeds 5, 209–221.

    Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends in Genetics 22, 268–280.

    PubMed  CAS  Google Scholar 

  • Brookes G, Barfoot P (2005) GM crops: the global economic and environmental impact – the first nine years 1996–2004. AgBioForum 8, 187–196.

    Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL(2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101, 4706–4711.

    PubMed  CAS  Google Scholar 

  • Brumbley SM, Purnell MP, Petrasovits LA, Fong Chong B, O’Neill BP, Nielsen LK (2006) Sugarcane: a versatile biofactory for accumulation of heterologous products derived from diverse precursors. In ‘Tropical Crop Biotechnology Conference’. Cairns. (Ed. JM Manners) p. 39.(CSIRO).

    Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Current Opinion in Biotechnology 15, 148–154.

    PubMed  CAS  Google Scholar 

  • Carmona ER, Arencibia AD, Lopez J, Simpson J, Vargas D, Sala F (2005) Analysis of genomic variability in transgenic sugarcane plants produced by Agrobacterium tumefaciens infection. Plant Breeding 124, 33–38.

    CAS  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crops Research 92, 137–147.

    Google Scholar 

  • Chen JCP, Chou C-C (1993) ‘Cane Sugar Handbook: a Manual for Cane Sugar Manufacturers and their Chemists.’ (Wiley: New York).

    Google Scholar 

  • Chen XP, Yuan HY, Chen RZ, Zhu LL, Du B, Weng QM, He GC (2002) Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as a plant growth stimulator. Plant and Cell Physiology 43, 869–876.

    PubMed  CAS  Google Scholar 

  • Chen YR, Sarkanen S (2006) From the macromolecular behavior of lignin components to the mechanical properties of lignin-based plastics. Cellulose Chemistry and Technology 40, 149–163.

    CAS  Google Scholar 

  • Cortina C, Culianez-Macia FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science 169, 75–82.

    CAS  Google Scholar 

  • Damaj MB, Mirkov ET, et al. (2004) New isolated nucleic acid comprises jasmonate-induced protein (JAS) promoter and an exogenous nucleic acid, useful as a promoter for altering carbon metabolism in a plant cell or for driving expression of insecticidal proteins in sugarcane. PCT Patent Application WO2004062366-A2.

    Google Scholar 

  • Dyer JM, Mullen RT(2005) Development and potential of genetically engineered oilseeds. Seed Science Research 15, 255–267.

    CAS  Google Scholar 

  • Edye LA, Doherty WOS, Blinco JA, Bullock GE (2005) The sugarcane biorefinery: energy crops and processes for the production of liquid fuels and renewable commodity chemicals. In ‘Australian Society of Sugar Cane Technologists 27th Conference’. Bundaberg. (Ed. DM Hogarth) pp.9–22.

    Google Scholar 

  • Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsonov DL, De la Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206, 20–27.

    CAS  Google Scholar 

  • Enriquez GA, Arencibia A, et al. (2001) Sugarcane biotechnology and genetic engineering experience at CIGB. In ‘International Society of Sugar Cane Technologists. Proceedings of the XXIV Congress, Brisbane, Australia, 17–21 September 2001. Volume 2’ pp. 578–579).

    Google Scholar 

  • Falco MC, Neto AT, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Reports 19, 1188–1194.

    CAS  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Bio/Technology 12, 883–888.

    Google Scholar 

  • Fujii S, Komoto M (1991) Novel carbohydrate sweeteners in Japan. Zuckerindustrie 116, 197–200.

    CAS  Google Scholar 

  • GalloMeagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Science 36, 1367–1374.

    CAS  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Science 45, 2060–2067.

    Google Scholar 

  • Gnanasambandam A, Birch RG (2001) The challenge of protein targeting to the sugarcane vacuoles for metabolic engineering. In ‘Proceedings of the International Society of Sugarcane Technologists XXIV Congress, Brisbane, September 2001’. (Ed. DM Hogarth) pp.667–669. (ASSCT: Mackay).

    Google Scholar 

  • Gnanasambandam A, Birch RG (2004) Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis. Plant Cell Reports 24, 435–447.

    Google Scholar 

  • Gnanasambandam A, Polkinghorne IG, Chamberlain D, Birch RG (2006) Efficient targeting of green fluorescent protein to plastids and endoplasmic reticulum in twelve (monocot and dicot) crops. Submitted.

    Google Scholar 

  • Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P (2005) A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant Journal 44, 633–645.

    PubMed  CAS  Google Scholar 

  • Gouni-Berthold I, Berthold HK (2002) Policosanol: clinical pharmacology and therapeutic significance of a new lipid-lowering agent. American Heart Journal 143, 356–365.

    PubMed  CAS  Google Scholar 

  • Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5, 122–127.

    PubMed  CAS  Google Scholar 

  • Grof CPL, Campbell JA (2001) Sugarcane sucrose metabolism: scope for molecular manipulation. Australian Journal of Plant Physiology 28, 1–12.

    CAS  Google Scholar 

  • Haas K, Brune T, Rucker E (2001) Epicuticular wax crystalloids in rice and sugar cane leaves are reinforced by polymeric aldehydes. Journal of Applied Botany 75, 178–187.

    CAS  Google Scholar 

  • Hajirezaei MR, Börnke F, Peisker M, Takahata Y, Lerchl J, Kirakosyan A, Sonnewald U (2003) Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). Journal of Experimental Botany 54, 477–488.

    PubMed  CAS  Google Scholar 

  • Hamilton RJ (1995) Commercial waxes: their composition and applications. In ‘Waxes: Chemistry, Molecular Biology and Functions’. (Ed. RJ Hamilton) pp.257–310. (The Oily Press: Dundee).

    Google Scholar 

  • Han JX, Luhs W, Sonntag K, Zahringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L. Plant Molecular Biology 46, 229–239.

    PubMed  CAS  Google Scholar 

  • Hansom S, Bower R, et al. (1999) Regulation of transgene expression in sugarcane. In ‘Proceedings of the International Society of Sugarcane Technologists XXIII Congress, New Delhi, February 1999’. (Ed. V Singh) pp.278–290. (STAI: New Dehli).

    Google Scholar 

  • Harrison MD, Kato M, Becker DK, Harding R, Bullock G, Dale JL (2006) Switching on enzymes to break down sugarcane waste for fermentation to bioethanol. In ‘Tropical Crop Biotechnology Conference’. Cairns. (Ed. JM Manners) p.97. (CSIRO).

    Google Scholar 

  • Hawkins S, Leple JC, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Annals of Forest Science 60, 427–438.

    Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiology 129, 1568–1580.

    PubMed  CAS  Google Scholar 

  • Howard JA, Hood E (2005) Bioindustrial and biopharmaceutical products produced in plants. Advances in Agronomy 85, 91–124.

    CAS  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiology 119, 1187–1197.

    PubMed  CAS  Google Scholar 

  • Inman-Bamber NG, Muchow RC, Robertson MJ (2002) Dry matter partitioning of sugarcane in Australia and South Africa. Field Crops Research 76, 71–84.

    Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Research 92, 277–290.

    Google Scholar 

  • Jacobsen KR, Fisher DG, Maretzki A, Moore PH (1992) Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Botanica Acta 105, 70–80.

    Google Scholar 

  • James G (2004) ‘Sugarcane.’ (Blackwell Science Ltd: Oxford).

    Google Scholar 

  • Karakas B, OziasAkins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell and Environment 20, 609–616.

    Google Scholar 

  • Khan R (1994) Sucrose: its potential as a raw material for food ingredients and for chemicals. In ‘Sucrose: Properties and Applications’. (Eds M Mathlouthi and P Reiser) pp.264–278. (Blackie: London).

    Google Scholar 

  • Klein J, Altenbuchner J, Mattes R (1998) Nucleic acid and protein elimination during the sugar manufacturing process of conventional and transgenic sugar beets. Journal of Biotechnology 60, 145–153.

    PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7, 235–246.

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1976) Introduction to natural waxes. In ‘Chemistry and Biochemistry of Natural Waxes’. (Ed. PE Kolattukudy) pp.1–15. (Elsevier: Amsterdam).

    Google Scholar 

  • Kolattukudy PE (1996) Biosynthetic pathways of cutin and waxes and their sensitivity to environmental stresses. In ‘Plant Cuticles’. (Ed. G Kerstiens) pp.83–108. (BIOS Scientific: Oxford).

    Google Scholar 

  • Kossmann J, Groenewald J-H, Botha FC (2006) Metabolic engineering of sucrose synthesis in sugarcane. In ‘Tropical Crop Biotechnology Conference’. Cairns. (Ed. JM Manners) p.20. (CSIRO).

    Google Scholar 

  • Kranz ZH, Lamberton JA, Murray KE, Redcliffe AH (1960) Sugar-cane wax II: an examination of the constituents of sugar-cane cuticle wax by gas chromatography. Australian Journal of Chemistry 13, 498–505.

    CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42, 51–80.

    PubMed  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: The challenges and opportunities. In Vitro Cellular & Developmental Biology-Plant 41, 345–363.

    CAS  Google Scholar 

  • Lamberton JA (1965) The long-chain aldehydes of sugar-cane wax. Australian Journal of Chemistry 18, 911–913.

    CAS  Google Scholar 

  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiology 122, 645–655.

    PubMed  CAS  Google Scholar 

  • Lassner MW (1997) Transgenic oilseed crops: a transition from basic research to product development. Lipid Technology 9, 5–9.

    Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba beta-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. The Plant Cell 8, 281–292.

    PubMed  CAS  Google Scholar 

  • Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Science 43, 671–677.

    CAS  Google Scholar 

  • Lichtenthaler FW (2002) Unsaturated O- and N-heterocycles from carbohydrate feedstocks. Accounts of Chemical Research 35, 728–737.

    PubMed  CAS  Google Scholar 

  • Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. Comptes Rendus Chimie 7, 65–90.

    CAS  Google Scholar 

  • Lina BAR, Jonker D, Kozianowski G (2002) Isomaltulose (Palatinose ®): a review of biological and toxicological studies. Food and Chemical Toxicology 40, 1375–1381.

    PubMed  CAS  Google Scholar 

  • Loreti E, Alpi A, Perata P (2000) Glucose and disaccharide-sensing mechanisms modulate the expression of alpha-amylase in barley embryos. Plant Physiology 123, 939–948.

    PubMed  CAS  Google Scholar 

  • Ma H, Albert H, Paull R, Moore P (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Australian Journal of Plant Physiology 21, 1021–1030.

    Google Scholar 

  • Ma JKC, Chikwarnba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005) Plant-derived pharmaceuticals – the road forward. Trends in Plant Science 10, 580–585.

    PubMed  CAS  Google Scholar 

  • Mayer MJ, Narbad A, Parr AJ, Parker ML, Walton NJ, Mellon FA, Michael AJ (2001) Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-CoA hydratase/lyase enzyme function. Plant Cell 13, 1669–1682.

    PubMed  CAS  Google Scholar 

  • McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnology Journal 3, 29–41.

    PubMed  CAS  Google Scholar 

  • Metz JG, Pollard MR, Anderson L, Hayes TR, Lassner MW (2000) Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiology 122, 635–644.

    PubMed  CAS  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. The Plant Journal 12, 121–131.

    PubMed  CAS  Google Scholar 

  • Mirkov ET, Monclin JP, Barrilleaux A, Irvine JE, Moonan F, Mirkov TE (2002) Extracting, refining recombinant proteins from transgenic plant material, comprises fractionating juice extracted from the material using multiple-stage filtering process followed by membrane type filtration and ion exchange. PCT Patent Application WO200283715-A.

    Google Scholar 

  • Mirkov TE, Damaj MB, Gonzalez J, Molina J, White SG, Nikolov Z (2006) Sugarcane as a biofactory for the economic production of low to medium value proteins: reality or wishful thinking? In ‘Tropical Crop Biotechnology Conference’. Cairns. (Ed. JM Manners) p.21. (CSIRO).

    Google Scholar 

  • Mirkov TE, Damaj MB, et al. (2004) New isolated nucleic acid comprises an O-methyl transferase (OMT) promoter and an exogenous nucleic acid, useful as a promoter for altering carbon metabolism in a plant cell or for driving expression of insecticidal proteins in sugarcane. PCT Patent Application WO2004062365-A2.

    Google Scholar 

  • Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Australian Journal of Plant Physiology 22, 661–679.

    CAS  Google Scholar 

  • Moore PH (2005) Integration of sucrose accumulation processes across hierarchical scales: towards developing an understanding of the gene-to-crop continuum. Field Crops Research 92,119–135.

    Google Scholar 

  • Moore PH, Botha FC, Furbank RT, Grof CPL (1997) Potential for overcoming physio-biochemical limits to sucrose accumulation. In ‘Intensive Sugarcane Production: Meeting the Challenges Beyond 2000’. (Eds BA Keating and JR Wilson) pp.141–155. (CAB International: Wallingford, UK).

    Google Scholar 

  • Moore PH, Nuss KJ (1987) Flowering and flower synchronization. In ‘Sugarcane Improvement Through Breeding’. (Ed. DJ Heinz) pp.273–311. (Elsevier: Amsterdam).

    Google Scholar 

  • Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2006) Sugarcane allelic variation, allelic expression patterns and implications for the isolation of sugarcane promoters. In ‘Tropical Crop Biotechnology Conference’. Cairns. (Ed. JM Manners) p.42. (CSIRO).

    Google Scholar 

  • Murphy DJ (2006) Molecular breeding strategies for the modification of lipid composition. In Vitro Cellular & Developmental Biology-Plant 42, 89–99.

    CAS  Google Scholar 

  • Nawrath C (2006) Unraveling the complex network of cuticular structure and function. Current Opinion in Plant Biology 9, 281–287.

    PubMed  CAS  Google Scholar 

  • OGTR (1997) PR-72: Field test of sugarcane modified for resistance to sugarcane mosaic virus. www.ogtr.gov.au/pdf/volsys/pr72.pdf.

    Google Scholar 

  • OGTR (2004) DIR 051/2004 – Field trial of genetically modified (GM) sugarcane expressing sucrose isomerase. www.ogtr.gov.au/ir/dir051.htm

    Google Scholar 

  • Potier BAM, Snyman SJ, Huckett BI (2006) Evaluating tissue-specific promoters from maize and sorghum for expression in sugarcane. In ‘Tropical Crop Biotechnology Conference’. Cairns. (Ed. JM Manners) p.41. (CSIRO).

    Google Scholar 

  • Rae AL, Grof CPL, Casu RE, Bonnett GD (2005) Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crops Research 92, 159–168.

    Google Scholar 

  • Ries S (1991) tTriacontanol and its 2nd messenger 9-beta-L(+)-adenosine as plant-growth substances. Plant Physiology 95, 986–989.

    PubMed  CAS  Google Scholar 

  • Ritsema T, Smeekens SCM (2003) Engineering fructan metabolism in plants. Journal of Plant Physiology 160, 811–820.

    PubMed  CAS  Google Scholar 

  • Ritsema T, Verhaar A, Vijn I, Smeekens S (2004) Fructosyltransferase mutants specify a function for the beta-fructosidase motif of the sucrose-binding box in specifying the fructan type synthesized. Plant Molecular Biology 54, 853–863.

    PubMed  CAS  Google Scholar 

  • Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochemical Journal 358, 437–445.

    PubMed  CAS  Google Scholar 

  • Sandager L, Stymne S (2000) Characterisation of enzymes determining fatty acid chain length in developing seeds of Limnanthes douglasii. Journal of Plant Physiology 156, 617–622.

    CAS  Google Scholar 

  • Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441, 227–230.

    PubMed  CAS  Google Scholar 

  • Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Current Opinion in Plant Biology 8, 188–196.

    PubMed  CAS  Google Scholar 

  • Schiweck H, Munir M, Rapp KM, Schneider B, Vogel M (1991) New developments in the use of sucrose as an industrial bulk chemical. In ‘Carbohydrates as Organic Raw Materials’. (Ed. FW Lichtenthaler) pp.57–94. (Wiley-VCH: Weinheim).

    Google Scholar 

  • Selman-Housein G, Lopez MA, Ramos O, Caroma ER, Arencibia AD, Menendez E, Miranda F (2000) Towards the improvement of sugarcane bagasse as raw material for the production of paper pulp and animal feed. In ‘Plant Genetic Engineering: Towards the Third Millenium’. (Ed. AD Arencibia) pp.189–193. (Elsevier: Amsterdam).

    Google Scholar 

  • Setamou M, Bernal JS, Legaspi JC, Mirkov TE, Legaspi BC (2002) Evaluation of lectin-expressing transgenic sugarcane against stalkborers (Lepidoptera : Pyralidae): Effects on life history parameters. Journal of Economic Entomology 95, 469–477.

    PubMed  CAS  Google Scholar 

  • Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco – High amounts of sorbitol lead to necrotic lesions. Plant Physiology 117, 831–839.

    PubMed  CAS  Google Scholar 

  • Sinha AK, Hofmann MG, Romer U, Kockenberger W, Elling L, Roitsch T (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiology 128, 1480–1489.

    PubMed  CAS  Google Scholar 

  • Sivitz AB, Reinders A, Ward JM (2005) Analysis of the transport activity of barley sucrose transporter HvSUT1. Plant and Cell Physiology 46, 1666–1673.

    PubMed  CAS  Google Scholar 

  • Slater S, Mitsky TA, et al. (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nature Biotechnology 17,1011–1016.

    PubMed  CAS  Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000a) Genetic engineering of lipids. In ‘Biochemistry and Molecular Biology of Plants’. (Eds BB Buchanan, W Gruissem and RL Jones) pp.518–525. (ASPP: Rockville, MD, USA).

    Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000b) Lipids. In ‘Biochemistry and Molecular Biology of Plants’. (Eds BB Buchanan, W Gruissem and RL Jones) pp.456–527. (ASPP: Rockville, MD, USA).

    Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Current Opinion in Biotechnology 17, 315–319.

    PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytologist 168, 9–23.

    PubMed  CAS  Google Scholar 

  • Takazoe I (1989) Palatinose – an isomeric alternative to sucrose. In ‘Progress in Sweeteners’. (Ed. TH Grenby) pp.143–167. (Elsevier: Barking).

    Google Scholar 

  • Taniguchi H (2004) Carbohydrate research and industry in Japan and the Japanese society of applied glycoscience. Starch 56, 1–5.

    CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering 4, 12–21.

    PubMed  CAS  Google Scholar 

  • Trujillo LE, Arrieta JG, et al. (2000) Strategies for fructan production in transgenic sugarcane (Saccharum spp. L.) and sweet potato (Ipomoea batatas L.) plants expressing the Acetobacter diazotrophicus levansucrase. In ‘Plant genetic engineering: towards the third millennium: Proceedings of the International Symposium on Plant Genetic Engineering, Havana, Cuba, 6–10 December, 1999.’\break pp. 194–198).

    Google Scholar 

  • Tulloch AP (1976) Chemistry of waxes of higher plants. In ‘Chemistry and Biochemistry of Natural Waxes’. (Ed. PE Kolattukudy) pp.235–287. (Elsevier: Amsterdam).

    Google Scholar 

  • van der Merwe J, Groenewald S, Botha FC (2003) Isolation and evaluation of a developmentally regulated sugarcane promoter. Proceedings of the South African Sugar Technologists’ Association 77, 146–149.

    Google Scholar 

  • van der Poel P, Schiweck H, Schwartz T (1998) ‘Sugar Technology: Beet and Cane Sugar Manufacture.’ (Verlag Dr. Albert Bartens KG: Berlin).

    Google Scholar 

  • van der Veen BA, Potocki-Veronese G, Albenne C, Joucla G, Monsan P, Remaud-Simeon M (2004) Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity. FEBS Letters 560, 91–97.

    PubMed  Google Scholar 

  • Vettore AL, da Silva FR, et al. (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Research 13, 2725–2735.

    PubMed  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Morgan TE (2005) Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Australian Journal of Agricultural Research 56, 57–68.

    CAS  Google Scholar 

  • Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiology 136, 4048–4060.

    PubMed  CAS  Google Scholar 

  • Vioque J, Kolattukudy PE (1997) Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (IPisum sativum L). Archives of Biochemistry and Biophysics 340, 64–72.

    PubMed  CAS  Google Scholar 

  • Waldron J, Reyes MEC, Hamerli D, Birch RG, Carroll BJ (2001) Tomato DNA sequences for resisting transgene silencing in sugarcane. In ‘Proceedings of the International Society of Sugarcane Technologists XXIV Congress, Brisbane, September 2001’. (Ed. DM Hogarth) pp.665–666. (ASSCT: Mackay).

    Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Research 14, 167–178.

    Google Scholar 

  • Watt DA, McCormick AJ, Govender C, Carson DL, Cramer MD, Huckett BI, Botha FC (2005) Increasing the utility of genomics in unravelling sucrose accumulation. Field Crops Research 92, 149–158.

    Google Scholar 

  • Werpy T, Petersen G (2004) ‘Top Value Added Chemicals from Biomass.’ (U.S. Department of Energy: Oak Ridge, TN).

    Google Scholar 

  • Weyens G, Ritsema T, et al. (2004) Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnology Journal 2, 321–327

    PubMed  CAS  Google Scholar 

  • Wilke D (1999) Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Applied Microbiology and Biotechnology 52, 135–145.

    PubMed  CAS  Google Scholar 

  • Wu L, Birch RG (2005) Characterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene. Applied and Environmental Microbiology 71, 1581–1590.

    PubMed  CAS  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnology Journal 5, 109–117.

    PubMed  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nature Biotechnology 17, 1021–1024.

    PubMed  CAS  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). Journal of Integrative Plant Biology 48, 453–459.

    CAS  Google Scholar 

  • Zuther E, Kwart M, Willmitzer L, Heyer AG (2004) Expression of a yeast-derived invertase in companion cells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrose transport. Planta 218, 759–766.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Birch, R.G. (2007). Metabolic Engineering in Sugarcane: Assisting the Transition to a Bio-based Economy. In: Verpoorte, R., Alfermann, A., Johnson, T. (eds) Applications of Plant Metabolic Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6031-1_11

Download citation

Publish with us

Policies and ethics