Skip to main content

Molecular links between metals in the environment and plant sulfur metabolism

  • Chapter
Sulfur in Plants An Ecological Perspective

Part of the book series: Plant Ecophysiology ((KLEC,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey NJ, Oven M, Holmes E, Nicholson JK, Zenk MH (2003) Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry 62: 851-858

    CAS  PubMed  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds), Phytoremediation of Contaminated Soil and Water. Lewis, Boca Raton, FL, pp 85-107

    Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37: 251-268

    CAS  PubMed  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metalcontaminated mine tailings. J Environ Qual 32: 432-440

    CAS  PubMed  Google Scholar 

  • Bhatia NP, Walsh KB, Baker AJ (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56: 1343-1349

    CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18: 213-217

    CAS  PubMed  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83: 158-167

    CAS  PubMed  Google Scholar 

  • Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11: 2-12

    CAS  PubMed  Google Scholar 

  • Cao X, Ma, LQ, Tu C (2004) Antioxidative responses to arsenic in the arsenichyperaccumulator Chinese brake fern (Pteris vittata L). Environ Pollut 128: 317-325

    CAS  PubMed  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163: 319-332

    CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18: 3325-3333

    CAS  PubMed  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7: 309-315

    CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53: 159-182

    CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20: 1140-1145

    CAS  PubMed  Google Scholar 

  • Domínguez-Solís JR, Gutiérrez-Alcalá G, Vega JM, Romero LC, Gotor C (2001) The cytosolic O-acetylserine(thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276: 9297-9302

    PubMed  Google Scholar 

  • Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J2: 469-476

    Google Scholar 

  • Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biotechnol 32: 527-533

    CAS  PubMed  Google Scholar 

  • Dormer UH, Westwater J, McLaren NF, Kent NA, Mellor J, Jamieson DJ (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem 275: 32611-32616

    CAS  PubMed  Google Scholar 

  • Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39: 425-439

    PubMed  Google Scholar 

  • Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138: 461-469

    CAS  PubMed  Google Scholar 

  • Eapen S, D'Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23: 97-114

    CAS  PubMed  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J & C Presl). Planta 214: 635-640

    CAS  PubMed  Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol Biol 20: 1019-1028

    CAS  PubMed  Google Scholar 

  • Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9: 713-723

    CAS  PubMed  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137: 1082-1091

    CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16: 2176-2191

    CAS  PubMed  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56: 3017-3027

    CAS  PubMed  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303: 440-445

    CAS  PubMed  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metalstressed plants a little easier. Funct Plant Biol 32: 481-494

    CAS  Google Scholar 

  • Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125: 164-167

    CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54: 2601-2613

    CAS  PubMed  Google Scholar 

  • Harada E, Choi Y-E, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158: 655-661

    CAS  Google Scholar 

  • Harada E, Yamaguchi Y, Koizumi N, Hiroshi S (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J Plant Physiol 159: 445-448

    CAS  Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196: 277-281

    CAS  Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29: 382-395

    CAS  PubMed  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19: 125-140

    CAS  PubMed  Google Scholar 

  • Heiss S, Schafer HJ, Haag-Kerwer A, Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39: 847-857

    CAS  PubMed  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54: 1833-1839

    CAS  PubMed  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216: 541-551

    CAS  PubMed  Google Scholar 

  • Howarth JR, Domínguez-Solís JR, Gutiérrez-Alcalá G, Wray JL, Romero LC, Gotor C (2003) The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol Biol 51: 589-598

    CAS  PubMed  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JA (2005a) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17: 2089-2106

    CAS  Google Scholar 

  • Ingle RA, Smith JA, Sweetlove LJ (2005b) Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum. Biometals 18: 627-641

    CAS  Google Scholar 

  • Jamieson D (2002) Saving sulfur. Nat Genet 31: 228-230

    CAS  PubMed  Google Scholar 

  • Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26: 153-157

    CAS  PubMed  Google Scholar 

  • Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137: 220-230

    CAS  PubMed  Google Scholar 

  • Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131: 716-724

    CAS  PubMed  Google Scholar 

  • Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39: 237-251

    CAS  PubMed  Google Scholar 

  • Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140: 922-932

    CAS  PubMed  Google Scholar 

  • Koprivova A, Kopriva S, Jäger D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4: 664-670

    CAS  Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122: 1343-1353

    CAS  PubMed  Google Scholar 

  • Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PM (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiol 134: 748-757

    PubMed  Google Scholar 

  • Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21: 1215-1221

    CAS  PubMed  Google Scholar 

  • Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215: 689-693

    CAS  PubMed  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003a) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131: 656-663

    CAS  Google Scholar 

  • Lee S, Petros D, Moon JS, Ko TS, Goldsbrough PB, Korban SS (2003b) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41: 903-910

    CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45: 1787-1797

    CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409: 579

    CAS  PubMed  Google Scholar 

  • Marmiroli M, Antonioli G, Maestri E, Marmiroli N (2005) Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb: an Xray spectroscopy-based analysis. Environ Pollut 134: 217-227

    CAS  PubMed  Google Scholar 

  • Marshner H (2002) Mineral Nutrition of Higher Plants. (2nd edition). Elsevier Academic Press, London

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14: 277-282

    CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl DG, Moreno-Sanchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238: 919-936

    CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29: 653-671

    CAS  PubMed  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L and Nicotiana tabacum L plants. Theor Appl Genet 78: 161-168

    CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129: 1872-1879

    CAS  PubMed  Google Scholar 

  • Noctor G, Arisi AC, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118: 471-482

    CAS  PubMed  Google Scholar 

  • Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH (2002) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60: 467-474

    CAS  PubMed  Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24: 341-351

    CAS  PubMed  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136: 3814-3823

    CAS  PubMed  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97: 4956-4960

    CAS  PubMed  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98: 9995-10000

    CAS  PubMed  Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation with transgenic trees. Z Naturforsch (C) 60: 199-207

    CAS  Google Scholar 

  • Pilon-Smits EA (2005) Phytoremediation. Annu Rev Plant Biol 56: 15-39

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Hwang S, Mel Lytle C, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119: 123-132

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110: 455-460

    CAS  Google Scholar 

  • Plessl M, Rigola D, Hassinen V, Aarts MG, Schat H (2005) Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J & C PRESL). Z Naturforsch [C] 60: 216-223

    CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21: 539-566

    CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Planta 223: 180-190

    CAS  PubMed  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134: 1113-1122

    CAS  PubMed  Google Scholar 

  • Rea PA (2003) Ion genomics. Nat Biotechnol 21: 1149-1151

    CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds), Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Wiley, New York, pp 193-229

    Google Scholar 

  • Reid R, Hayes J (2003) Mechanisms and control of nutrient uptake in plants. Int Rev Cytol 229: 73-114

    CAS  PubMed  Google Scholar 

  • Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577: 9-16

    CAS  PubMed  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16: 925-928

    CAS  PubMed  Google Scholar 

  • Salt D, Prince RC, Backer AJM, Raskin I, Pickering IJ (1999) Zink ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33: 713-717

    CAS  Google Scholar 

  • Salt DE (2004) Update on plant ionomics. Plant Physiol 136: 2451-2456

    CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ (2002) Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchem J 71: 255-259

    CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41: 105-130

    Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130: 1815-1826

    CAS  PubMed  Google Scholar 

  • Schafer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37: 87-97

    CAS  PubMed  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53: 2381-2392

    CAS  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metalinduced oxidative stress and protection by mycorrhization. J Exp Bot 53: 1351-1365

    CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acidderived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57: 711-726

    CAS  PubMed  Google Scholar 

  • Sirko A, Błaszczyk A, Liszewska F (2004) Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects. J Exp Bot 55: 1881-1888

    CAS  PubMed  Google Scholar 

  • Suh MC, Choi D, Liu JR (1998) Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L metallothionein-like gene. Mol Cells 8: 678-684

    CAS  PubMed  Google Scholar 

  • Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta 221: 928-936

    CAS  PubMed  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebrun M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75: 2740-2745

    CAS  PubMed  Google Scholar 

  • van Hoof NA, Hassinen VH, Hakvoort HW, Ballintijn KF, Schat H, Verkleij, JA, Ernst WH, Karenlampi SO, Tervahauta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126: 1519-1526

    CAS  PubMed  Google Scholar 

  • Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276: 8469-8474

    CAS  PubMed  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130: 1552-1561

    PubMed  Google Scholar 

  • Wawrzynski A, Kopera E, Wawrzynska A, Kaminska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiols content and cadmium accumulation in tobacco plants. J Exp Bot 57: 2173-2182

    CAS  PubMed  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37: 269-281

    CAS  PubMed  Google Scholar 

  • White MC, Baker FD, Chaney RL, Decker AM (1981) Metal Complexation in xylem fluid: II Theoretical equilibrium model and computational computer program. Plant Physiol 67: 301-310

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10: 586-593

    PubMed  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126: 564-574

    CAS  PubMed  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18: 339-353

    CAS  PubMed  Google Scholar 

  • Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25: 365-373

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159: 403-410

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121: 1169-1178

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999b) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119: 73-80

    CAS  Google Scholar 

  • Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58: 839-855

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sirko, A., Gotor, C. (2007). Molecular links between metals in the environment and plant sulfur metabolism. In: Hawkesford, M.J., De Kok, L.J. (eds) Sulfur in Plants An Ecological Perspective. Plant Ecophysiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5887-5_8

Download citation

Publish with us

Policies and ethics