Skip to main content

The apoplast of ectomycorrhizal roots – site of nutrient uptake and nutrient exchange between the symbiotic partners

  • Chapter
The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions

Abstract

Between 80 and 90% of all known plant species live in close interaction with mycorrhizal fungi in a mutalistic interaction, the mycorrhizal symbiosis. Mycorrhizal root tips with their extramatrical mycelium increase the absorbing surface area of mycorrhizal roots and contribute significantly to the nutrient uptake of plants. The following paper deals with the role of the apoplast for nutrient uptake and nutrient exchange between both partners. Investigations by use of fluorescent dyes as apoplastic tracers showed that the fungal sheath of the ectomycorrhizal roots does not act as an effective apoplastic barrier for the entry of nutrients into the mycorrhizal root cortex. However, nutrients such as P can be absorbed by hyphae of the extramatrical mycelium or the fungal sheath and the transfer to the host plant is controlled by the fungal symplast. The results indicate that the uptake of P by the extramatrical mycelium and the transfer across the interfacial apoplast to the mycorrhizal host plant is not primarily regulated by the host plant demand for P, but by the flux of carbohydrates from the mycorrhizal host plant to the fungal symbiont. A model system shows how the carbohydrate and P exchange between both symbiotic partners is possibly linked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashford, A. E., Allaway, W. G., Peterson, C. A. and Cairney, J. W. G. (1989). Nutrient transfer and the fungus-root interface. Aust. J. Plant Physiol., 16, 85–97.

    Article  CAS  Google Scholar 

  • Behrmann, P. (1995). Entwicklung, Struktur und Funktion der Endodermis in mykorrhizierten und nicht-mykorrhizierten Baumwurzeln unter besonderer Berücksichtigung der Kiefer (Pinus sylvestris L.). Ph.D. thesis, University of Bremen, Germany.

    Google Scholar 

  • Bücking, H. and Heyser, W. (1994). The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil, 167, 203–212.

    Article  Google Scholar 

  • Bücking, H. and Heyser, W. (2000). Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. I. The distribution of phosphate. New Phytol., 145, 311–320.

    Article  Google Scholar 

  • Bücking, H. and Heyser, W. (2001). Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula x Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol., 21, 101–107.

    PubMed  Google Scholar 

  • Bücking, H. and Heyser, W. (2003). Uptake and transfer of nutrients in ectomycorhizal associations: interactions between photosynthesis and phosphate nutrition. Mycorrhiza, 13, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Bücking, H., Warner, J., Hespe, C. and Heyser, W. (2001).

    Google Scholar 

  • Autoradiographische und cytochemische Untersuchungen zum Assimilattransfer in der ektotrophen Mykorrhiza. In R. Langenfeld-Heyser, A. Polle and E. Fritz (eds), Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt. Band 131: Neues zum Stofftransport in Bäumen. J. D. Sauerländer’s Verlag. Frankfurt am Main, pp. 108–120.

    Google Scholar 

  • Bücking, H. and Shachar-Hill, Y. (2005). Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol., 165, 899–912.

    Article  PubMed  CAS  Google Scholar 

  • Bücking, H., Kuhn, A. J., Schröder, W. H. and Heyser, W. (2002). The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium and potassium into the root cortex? J. Exp. Bot., 53, 1659–1669.

    Article  PubMed  CAS  Google Scholar 

  • Cairney, J. W. G. and Smith, S. E. (1992). Influence of intracellular phosphorus concentration on phosphate absorption by the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol. Res., 96, 673–676.

    Article  CAS  Google Scholar 

  • Chalot, M., Javelle, A., Blaudez, D., Lambilliote, R., Cooke, R., Sentenac, H., Wipf, D. and Botton, B. (2002). An update on nutrient transport processes in ectomycorrhizas. Plant Soil, 244, 165–175.

    Article  CAS  Google Scholar 

  • Duddridge, J. A. and Read, D. J. (1984). The development and ultrastructure of ectomycorrhizas. II. Ectomycorrhizal development on pine in vitro. New Phytol., 96, 575–582.

    Article  Google Scholar 

  • Finlay, R. and Söderström, B. (1992). Mycorrhiza and carbon flow to the soil. In M. J. Allen (ed.), Mycorrhizal Functioning. Chapman and Hall, New York, pp. 134–160.

    Google Scholar 

  • Harley, J. L. and Smith, S. E. (1983). Mycorrhizal symbiosis. Academic Press, London.

    Google Scholar 

  • Harold, F. M. (1994). Ionic and electrical dimensions of hyphal growth. In J. G. H. Wessels and F. Meinhardt (eds), The Mycota I. Growth, Differentiation and Sexuality. Springer-Verlag, Berlin. pp. 89–109.

    Google Scholar 

  • Häussling, M., Jorns, C. A., Lehmbecker, G., Hecht-Buchholz, C. and Marschner, H. (1988). Ion 0and water uptake in relation to root development in norway spruce (Picea abies (L.) Karst.). J. Plant Physiol., 133, 486–491.

    Google Scholar 

  • Jones, M. D., Durall, D. M. and Tinker, P. B. (1991). Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol., 119, 99–106.

    Article  CAS  Google Scholar 

  • Kuhn, A. J., Schröder, W. H. and Bauch, J. (2000). The kinetics of calcium and magnesium entry into mycorrhizal spruce roots. Planta, 210, 488–496.

    Article  PubMed  CAS  Google Scholar 

  • Kulaev, I., Vagabov, V. and Kulakovskaya, T. (1999). New aspects of inorganic polyphosphate metabolism and function. J. Biosci. Bioeng., 88, 111–129.

    Article  PubMed  CAS  Google Scholar 

  • Lei, J. and Dexheimer, J. (1988). Ultrastructural localization of ATPase activity in the Pinus sylvestris/Laccaria laccata ectomycorrhizal association. New Phytol., 108, 329–334.

    Article  CAS  Google Scholar 

  • Lewis, D. H. and Harley, J. L. (1965). Carbohydrate physiology of mycorrhizal roots of beech. I. Identity of endogenous sugars and utilization of exogenous sugars. New Phytol., 64, 224–237.

    Article  CAS  Google Scholar 

  • Marschner, H. and Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159, 89–102.

    CAS  Google Scholar 

  • Nehls, U., Mikolajewski, S., Magel, E. and Hampp, R. (2001). Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytol., 150, 533–541.

    Article  CAS  Google Scholar 

  • Peng, S., Eissenstat, D. M., Graham, J. H., Williams, K., Hodge, N. C. (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply. Plant Physiol., 101, 1063–1071.

    PubMed  CAS  Google Scholar 

  • Peterson R. L. and Bonfante, P. (1994). Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil, 159, 79–88.

    Google Scholar 

  • Rosewarne, G. M., Barker, S. J., Smith, S. E., Smith, F. A. and Schachtman, D. P. (1999). A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol., 144, 507–516.

    Article  CAS  Google Scholar 

  • Salzer, P. and Hager, A. (1993). Characterization of wall bound invertase isoforms of Picea abies cells and regulation by ectomycorrhizal fungi. Physiol. Plant., 88, 52–59.

    Article  CAS  Google Scholar 

  • Smith, S. E. and Read, D. J. (1997). Mycorrhizal Symbiosis (2nd ed). Academic Press, London.

    Google Scholar 

  • Smith, S. E. and Smith, F. A. (1990). Tansley review No. 20. structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol., 114, 1–38.

    Article  CAS  Google Scholar 

  • Smith, S. E., Dickson, S., Morris, C. and Smith, F. A. (1994a). Transfer of phosphate from fungus to plant in VA mycorrhizas: calculations of the area of symbiotic interface and of fluxes of P from two different fungi to Allium porrum L. New Phytol. 127, 93–99.

    Article  CAS  Google Scholar 

  • Smith S. E., Gianinazzi-Pearson, V., Koide, R. and Cairney, J. W. G. (1994b). Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. Plant Soil, 159, 103–113.

    Article  CAS  Google Scholar 

  • Smith, S. E., Dickson, S. and Smith, F. A. (2001). Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust. J. Plant Physiol., 28, 683–694.

    CAS  Google Scholar 

  • Tarkka, M., Niini, S. S. and Raudaskoski, M. (1998). Developmentally regulated proteins during differentiation of root system and ectomycorrhiza in Scots pine (Pinus sylvestris) with Suillus bovinus. Physiol. Plant., 104, 449–455.

    Article  CAS  Google Scholar 

  • Thomson, B. D., Clarkson, D. T. and Brain, P. (1990). Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol., 116, 647–653.

    Article  CAS  Google Scholar 

  • Vesk, P. A., Ashford, A. E., Markovina, A. -L. and Allaway, W. G. (2000). Apoplasmic barriers and their significance in the exodermis and sheath of Eucalyptus pilularisPisolithus tinctorius ectomycorrhizas. New Phytol., 145, 333–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

BÜcking, H., Hans, R., Heyser, W. (2007). The apoplast of ectomycorrhizal roots – site of nutrient uptake and nutrient exchange between the symbiotic partners. In: Sattelmacher, B., Horst, W.J. (eds) The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_7

Download citation

Publish with us

Policies and ethics