Skip to main content

Part of the book series: Reviews: Methods and Technologies in Fish Biology and Fisheries ((REME,volume 11))

Abstract

The earliest example of using earbones or otoliths to provide estimates of fish ages dates back to at least 1899 (Reibisch, cited in Jones 1992). Back-calculation to reconstruct growth patterns from hard parts of fish (otoliths, bones and scales) followed soon after (Lea 1910). The approach involves using measurements made on these bony structures to infer, or back-calculate, body length at ages prior to capture. Back-calculation has been used to generate individual growth histories of fishes for almost a century (Francis 1990) and has proved to be an invaluable tool for fisheries scientists and fish ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagenal TB, Tesch FW (1978) Age and growth. In: Bagenal TB (Ed) Methods for assessment of fish production in fresh waters, 3rd Edition. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Bang A, Gronkjaer P (2005) Otolith size at hatch reveals embryonic oxygen consumption in the zebrafish, Danio rerio. Mar Biol 147:1419–1423

    Google Scholar 

  • Brothers EB (1995) Session II. Overview II. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, SC

    Google Scholar 

  • Campana SE (1990) How reliable are growth back-calculations based on otoliths? Can J Fish Aquat Sci 47:2219–2227

    Article  Google Scholar 

  • Campana SE (1992) Measurement and interpretation of the microstructure of fish otoliths. In: Stevenson DK, Campana SE (Eds) Otolith microstructure examination and analysis. Can Spec Publ Fish Aquat Sci 117:59–71

    Google Scholar 

  • Chambers RC, Miller TJ (1995) Statistical analysis of reconstructed life histories from otoliths: special properties of longitudinal data. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, SC

    Google Scholar 

  • Cock AG (1966) Genetical aspects of metrical growth and form in animals. Q Rev Biol 41:131–190

    Article  CAS  PubMed  Google Scholar 

  • Doherty PJ, Dufour V, Galzin R, Hixon MA, Meekan MG, Planes S (2004) High mortality during settlement is a population bottleneck for a tropical surgeonfish. Ecology 85:2422–2428

    Article  Google Scholar 

  • Escot C, Granado-Lorencio C (1999) Comparison of four methods of back-calculating growth using otoliths of a European barbel, Barbus sclateri (Günther) (Pisces: Cyprinidae). Mar Freshwater Res 50:83–88

    Article  Google Scholar 

  • Fey DP (2006) The effect of temperature and somatic growth on otolith growth: the discrepancy between two clupeid species from a similar environment. J Fish Biol 69:794–806

    Article  Google Scholar 

  • Finstad AG (2003) Growth backcalculations based on otoliths incorporating an age effect: adding an interaction term. J Fish Biol 62:1222–1225

    Article  Google Scholar 

  • Francis RICC (1995) The analysis of otolith data. A mathematician’s perspective (what, precisely, is your model?). In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, SC

    Google Scholar 

  • Francis RICC (1990) Back-calculation of fish length: a critical review. J Fish Biol 36:883–902

    Article  Google Scholar 

  • Fraser CMcL (1916) Growth of the spring salmon. Trans Pacif Fish Soc 1915:29–39

    Google Scholar 

  • Fry FEJ (1943) A method for the calculation of the growth of fishes from scale measurements. Publ Ont Fish Res Lab 61:5–18

    Google Scholar 

  • Geffen AJ (1992) Validation of otolith increment deposition rate. In: Stevenson DK, Campana SE (Eds) Otolith microstructure examination and analysis. Can Spec Publ Fish Aquat Sci 117:101–113

    Google Scholar 

  • Gleason TR, Bengtson DA (1996) Size-selective mortality of inland silversides: evidence from otolith microstructure analysis. Trans Am Fish Soc 125:860–873

    Article  Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev Cambridge Philos Soc 41:587–640

    Article  CAS  Google Scholar 

  • Grimes CB, Isley JJ (1996) Influence of size selective mortality on growth of Gulf menhaden and King mackerel larvae. Trans Am Fish Soc 125:741–752

    Article  Google Scholar 

  • Gutreuter S (1987) Considerations for estimation and interpretation of annual growth rates. In: Summerfelt RC, Hall GE (Eds) Age and growth of fish. Iowa State University Press, Ames, Iowa, pp 115–126

    Google Scholar 

  • Hare JA, Cowen RK (1995) Effect of age, growth rate, and ontogeny on the otolith size – fish size relationship in bluefish, Potamus saltatrix, and the implications for back-calculation of size in fish early life history stages. Can J Fish Aquat Sci 52:1909–1922

    Google Scholar 

  • Hovenkamp F (1992) Growth-dependent mortality of larval plaice Pleuronectes platessa in the North Sea. Mar Ecol Progr Ser 82:95–101

    Article  Google Scholar 

  • Jones CM (1992) Development and application of the otolith increment technique. In: Stevenson DK, Campana SE (Eds) Otolith microstructure examination and analysis. Can Spec Publ Fish Aquat Sci 117:1–11

    Google Scholar 

  • Klumb RA, Bozek MA, Frie RV (2001) Validation of three back-calculation models by using multiple oxytetracycline marks formed in the otoliths and scales of bluegill × green sunfish hybrids. Can J Fish Aquat Sci 58:352–364

    Article  Google Scholar 

  • Lea E (1910) On the methods used in the herring investigations. Publ Circ Cons Perm Int Explor Mer 53:7–25

    Google Scholar 

  • Lee RM (1920) A review of the methods of age and growth determination in fishes by means of scales. Fish Invest Lond Ser 24(2):1–32

    Google Scholar 

  • Macpherson E (1998) Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J Exp Mar Biol Ecol 220:127–150

    Article  Google Scholar 

  • Meekan MG (1997) Relationships between otolith and somatic growth of cod larvae (Gadus morhua). J Plankton Res 19:167–169

    Article  Google Scholar 

  • Meekan MG, Dodson JJ, Good SP, Ryan DAJ (1998) Otolith and fish size relationships, measurement error and size selective mortality during the early life of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55:1666–1673

    Google Scholar 

  • Meekan MG, Fortier L (1996) Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar Ecol Prog Ser 137:25–37

    Article  Google Scholar 

  • Morita K, Matsuishi T (2001) A new model of growth back-calculation incorporating age effect based on otoliths. Can J Fish Aquat Sci 58:1805–1811

    Article  Google Scholar 

  • Mosegaard H, Svedang H, Taberman K (1988) Uncoupling of somatic and otolith growth rates in arctic char (Salvelinus alpinus) as an effect of differences in temperature response. Can J Fish Aquat Sci 45:1514–1524

    Article  Google Scholar 

  • Mugiya Y (1987) Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in the rainbow trout, Salmo gairderi. Fish Bull 85:395–401

    Google Scholar 

  • Mugiya Y (1990) Long-term effects of hypophysectomy on the growth and calcification of otoliths and scales in the goldfish, Carassius auratus. Zool Sci 7:273–279

    CAS  Google Scholar 

  • Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173:1124–1126

    Article  Google Scholar 

  • Pannella G (1974) Otolith growth patterns: an aid in age determination in temperate and tropical fishes. In: Bagenal TB (Ed) Ageing of fish. Unwin Brothers, London

    Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer-Verlag, New York

    Google Scholar 

  • Ricker WE (1969) Effects of size-selective mortality and sampling bias on estimates of growth, mortality, production and yield. J Fish Res Board Can 26:479–541

    Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Can 191:382pp

    Google Scholar 

  • Ricker WE (1979) Growth rates and models. In: Hoar WS, Randall DJ, Brett JR (Eds) Fish physiology, Vol. 8. Academic Press, Inc Publ, Orlando, FL

    Google Scholar 

  • Schirripa MJ (2002) An evaluation of back-calculation methodology using simulated otolith data. Fish Bull 100:789–799

    Google Scholar 

  • Secor DH, Dean JM (1989) Somatic growth effects on the otolith – fish size relationship in young pond-reared striped bass, Morone saxatilis. Can J Fish Aquat Sci 46:113–121

    Article  Google Scholar 

  • Secor DH, Dean JM (1992) Comparison of otolith-based back-calculation methods to determine individual growth histories of larval striped bass, Morone saxatilis. Can J Fish Aquat Sci 49:1439–1454

    Article  Google Scholar 

  • Secor DH, Dean JM, Baldevarona RB (1989) Comparison of otolith growth and somatic growth in larval and juvenile fishes based on otolith length/fish length relationships. Rapp P-V Réun Cons Int Explor Mer 191:431–438

    Google Scholar 

  • Sherriff CWM (1922) Herring investigations. Report on the mathematical analysis of random samples of herrings. Scient Invest Fishery Bd Scotl 1:25pp

    Google Scholar 

  • Sirois P, Lecomte F, Dodson JJ (1998) An otolith-based back-calculation method to account for time-varying growth rate in rainbow smelt (Osmerus mordax) larvae. Can J Fish Aquat Sci 55:2662–2671

    Article  Google Scholar 

  • Smedstad OM, Holm JC (1996) Validation of back-calculation formulae for cod otoliths. J Fish Biol 49:973–985

    Article  Google Scholar 

  • Sogard SM (1997) Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci 41:423–431

    Google Scholar 

  • Stevenson DK, Campana SE (Ed) (1992) Otolith microstructure examination and analysis. Can Spec Publ Fish Aquat Sci 117:136pp

    Google Scholar 

  • Templeman W, Squires HJ (1956) Relationship of otolith lengths and weights in the haddock Melanogrammus aeglefinus (L.) to the rate of growth of the fish. J Fish Res Board Can 13:467–487

    Google Scholar 

  • Thomas RM (1983) Back-calculation and time of hyaline ring formation in the otoliths of the pilchard off South West Africa. S Afr J Mar Sci 1:3–18

    Google Scholar 

  • Tremblay G, Giguère LA (1992) Relation longueur/écaille allométrique chez le saumon atlantique (Salmo salar) durant la phase marine. Can J Fish Aquat Sci 49:46–51

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th Edition. Springer, New York.

    Google Scholar 

  • Vigliola L, Doherty PJ, Meekan MG, Drown D, Jones ME, Barber PH (2007) Genetic identity determines risk of post-settlement mortality of a marine fish. Ecology 88(5):1263–1277

    Article  PubMed  Google Scholar 

  • Vigliola L, Harmelin-Vivien M, Meekan MG (2000) Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of Diplodus from the Mediterranean Sea. Can J Fish Aquat Sci 57:1292–1299

    Article  Google Scholar 

  • Vigliola L, Meekan MG (2002) Size at hatching and planktonic growth determine post-settlement survivorship of a coral reef fish. Oecologia 131:89–93

    Article  Google Scholar 

  • Watanabe Y, Kuroki T (1997) Asymptotic growth trajectories of larval sardine (Sardinops melanostictus) in the coastal waters off western Japan. Mar Biol 127:369–378

    Article  Google Scholar 

  • Webster MS, Almany GR (2006) The predation gauntlet: early post-settlement mortality in coral reef fishes. Coral Reefs 25:19–22

    Article  Google Scholar 

  • Weisberg S (1993) Using hard-part increment data to estimate age and environmental effects. Can J Fish Aquat Sci 50:1229–1237

    Article  Google Scholar 

  • Weisberg S, Frie RV (1987) Linear models for the growth of fish. In: Summerfelt RC, Hall GE (Eds) Age and growth of fish. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Whitney RR, Carlander KD (1956) Interpretation of body-scale regression for computing body length of fish. J Wild Manage 20:21–27

    Article  Google Scholar 

  • Wilson J, Osenberg CW (2002) Experimental and observational patterns of density-dependent settlement and survival in the marine fish Gobiosoma. Oecologia 130:205–215

    Google Scholar 

  • Wilson JA, Vigliola L, Meekan MG (2008) The back-calculation of size from otoliths: validation and comparison of models at an individual level. J Exp Mar Biol Ecol doi:10.1016/j.jembe.2008.09.005

    Google Scholar 

  • Wright PJ, Metcalfe NB, Thorpe JE (1990). Otolith and somatic growth rate in Atlantic salmon parr, Salmo salar L. Evidence against coupling. J Fish Biol 36:241–249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Vigliola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vigliola, L., Meekan, M.G. (2009). The Back-Calculation of Fish Growth From Otoliths. In: Green, B.S., Mapstone, B.D., Carlos, G., Begg, G.A. (eds) Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Reviews: Methods and Technologies in Fish Biology and Fisheries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5775-5_6

Download citation

Publish with us

Policies and ethics