Skip to main content

STATISTICAL ESTIMATION METHODS FOR EXTREME HYDROLOGICAL EVENTS

  • Conference paper
Extreme Hydrological Events: New Concepts for Security

Part of the book series: NATO Science Series ((NAIV,volume 78))

Abstract

Abstract- In this paper an overview is given of the statistical methods which are needed to analyse observed environmetric data with a particular interest for the extreme values. The methods for trend analysis, stationarity tests, seasonality analysis, long-memory studies will be presented, critically reviewed, applied to some existing datasets, and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agiakloglou, C., Newbold, P., Wohar, M., 1993. Bias in an estimator of the fractional difference parameter. J. Time Ser. Anal., 14, 235–246.

    Google Scholar 

  • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, B.N. Petrov and F. Csaki (eds.). Akademia Kiado, Budapest, 267–281.

    Google Scholar 

  • Andrews, Donald, W.K, 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, 817–858.

    Article  MATH  MathSciNet  Google Scholar 

  • Bartlett, M.S., 1950. Periodogram analysis and continuous spectra. Biometrika, 37, 1–16.

    MATH  MathSciNet  Google Scholar 

  • Beran, J., 1994. Statistics for Long-Memory Processes. Chapman & Hall, New York.

    MATH  Google Scholar 

  • Bloomfield, P., 1992. Trend in global temperature. Climatic Change, 21, 1–16.

    Article  Google Scholar 

  • Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26:211–252.

    MATH  MathSciNet  Google Scholar 

  • Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis: Forecasting and Control (2nd edition). San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Burn, D.H., Hag Elnur, M.A., 2002. Detection of hydrological trend and variability. J. Hydrol. 255, 107–122.

    Article  Google Scholar 

  • Chen, H.L., Rao, A.R., 2002. Testing hydrological time series for stastionarity. J Hydrol. Eng., 7(2), 129–136.

    Article  Google Scholar 

  • Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 423–431.

    Article  MathSciNet  Google Scholar 

  • Dietz, E.J., Killeen., T.J., 1981. A Nonparametric Multivariate Test for Monotonic Trend With Pharmaceutical Applications. J. Am. Stat. Assoc. 76(373), 169–174.

    Article  MATH  MathSciNet  Google Scholar 

  • Douglas, E. M., Vogel, R. M., and Kroll, C. N., 2000. Trends in floods and low flows in the United States: Impact of spatial correlation, J. Hydrol., 240, 90–105.

    Article  Google Scholar 

  • Fu, G., Chen, S., Liu, C., Shepard, D., 2004. Hydro-climatic trends of the Yellow river basin for the last 50 years. Climatic Change 65, 149–178.

    Article  Google Scholar 

  • Fuller, W.A., 1976. Introduction to Statistical Time Series. New York: Wiley.

    MATH  Google Scholar 

  • Geweke, J., Porter-Hudak, S., 1983. The estimation and application of long memory time series models. J. Time Ser. Anal., 4:221–238.

    MATH  MathSciNet  Google Scholar 

  • Gimeno, R., Manchado, B., Minguez, R., 1999. Stationarity tests for financial time series. Physica A 269, 72–78.

    Article  Google Scholar 

  • Giraitis, L., Robinson, P.M., Samarov, A., 1997. Rate optimal semiparametric estimation of the memory parameter of the Gaussian time series with long range dependence. J. Time Ser. Anal., 18 49–60.

    Article  MATH  MathSciNet  Google Scholar 

  • Granger, C. W. J., Joyeux, R., 1980. An Introduction to Long-Memory Time Series Models and Fractional Differencing, J. Time Ser. Anal., 1, 15–29.

    MATH  MathSciNet  Google Scholar 

  • Hamilton, J.D., 1994. Time Series Analysis, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Haslett, J., Raftery, A. E., 1989. Space-time modeling with long-memory dependence: assessing Ireland’s wind power resource (with discussion). Applied Statistics 38, 1–50.

    Article  Google Scholar 

  • Helsel, D.R., Hirsch, R.M., 1992. Statistical Methods in Water Resources. Amsterdam: Elsevier.

    Google Scholar 

  • Hirsch, R.M., Slack, J.R., 1984. A Nonparametric Trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732.

    Google Scholar 

  • Hirsch, R.M., Slack, J.R., Smith, R.A., 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121.

    Google Scholar 

  • Hosking, J.R.M., 1981. Fractional differencing, Biometrika, 68, 165–176.

    Article  MATH  MathSciNet  Google Scholar 

  • Hurst, H.E., 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116:770–808.

    Google Scholar 

  • Hurvich, C.M., Bellrao, K., 1993. Asymptotics for the low-frequency ordinates of the periodogram of a long-memory time series. J. Time Ser. Anal., 14, 455–472.

    MATH  MathSciNet  Google Scholar 

  • Hurvich, C.M., Deo, R.S., 1999. Plug-in selection of the number of frequencies in regression estimates of the memory parameter of a long-memory time series. J. Time Ser. Anal., 20(3), 331–341.

    Article  MATH  MathSciNet  Google Scholar 

  • Hussain, S., Elbergali, A., 1999. Fractional order estimation and testing, application to Swedish temperature data. Environmetrics, 10, 339–349.

    Article  Google Scholar 

  • Insightful Corpration, 2001. Chapter 27 “Analyzing time series and signals” of the S-PLUS 6 for Windows Guide to Statistics, Volume 2, Insightful Corporation, Seattle, WA.

    Google Scholar 

  • Jain, S., Lall, U., 2001. Floods in a changing climate: Does the past represent the future? Water Resources Research, 37(12), 3193–3205.

    Article  Google Scholar 

  • Karagiannis, T., Molle, M., Faloutsos, M., 2004. Long-range dependence: ten years of internet traffic modeling. IEEE Internet Computing, 8(5): 57–64.

    Article  Google Scholar 

  • Kendall, M.G., 1938. A new measure of rank correlation. Biometrika, 30, 81–93.

    MATH  MathSciNet  Google Scholar 

  • Kendall, M.G., 1975. Rank Correlation Methods, Charles Griffin, London.

    MATH  Google Scholar 

  • Kendziorskia, C.M., Bassingthwaighteb, J.B., Tonellato, P.J., 1999. Evaluating maximum likelihood estimation methods to determine the Hurst coefficient. Physica A, 273, 439–451.

    Article  Google Scholar 

  • Kundzewicz, Z.W., Graczyk, D., Maurer, T., Przymusinska, I., Radziejewski, M., Svensson, C., Szwed, M., 2004. Detection of change in world-wide hydrological time series of maximum annual flow. GRDC Report 32, GRDC, Koblenz, Germany.

    Google Scholar 

  • Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the null of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econometrics 54, 159–178.

    Article  MATH  Google Scholar 

  • Lee, D., Schmidt, P., 1996. On the power of the KPSS test of stationarity against fractionally-integrated alternatives. J. Econometrics, 73(1), 285–302.

    Article  MATH  MathSciNet  Google Scholar 

  • Lettenmaier, D.P., Wood, E.F. Chapter 26 Hydrological forecasting. In: D.R. Maidment (ed.), Handbook of Hydrology. McGraw-Hill, New York, 1993 26.1–26.30.

    Google Scholar 

  • Lo, A.L., 1991. Long-term memory in stock market prices. Econometrica, 59 (5), 1279–1313.

    Article  MATH  MathSciNet  Google Scholar 

  • Mandelbrot, B.B., Wallis, J.R., 1969a. Computer experiments with fractional Gaussian noises. Part 1, 2 and 3. Water Resources Research 5, 228–267.

    Google Scholar 

  • Mandelbrot, B.B., Wallis, J.R., 1969b. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resources Research, 5, 967–988.

    Article  Google Scholar 

  • Mann, H.B., 1945. Nonparametric test against trend. Econometrica, 13, 245–259.

    Article  MATH  MathSciNet  Google Scholar 

  • McLeod, A.I., 1994. Diagnostic Checking of Periodic Autoregression. J. Time Ser. Anal., 15(2), 221–233.

    MATH  MathSciNet  Google Scholar 

  • McLeod, A.I., 1975. Derivation of the theoretical autocovariance function of autoregressive-moving average time series. Applied Statistics, 24(2), 255–256.

    Article  MathSciNet  Google Scholar 

  • Meade, N., Maier, M.R., 2003. Evidence of long memory in short-term interest rates. J. Forecast., 22, 553–568.

    Article  Google Scholar 

  • Mitosek, H.T., 2000. On stochastic properties of daily river flow processes. Journal of Hydrology, 228, 188–205.

    Article  Google Scholar 

  • Montanari, A., Rosso, R., Taqqu, M. S., 1997. Fractionally differenced ARIMA models applied to hydrological time series: Identification, estimation, and simulation. Water Resources Research, 33(5), 1035–1044.

    Article  Google Scholar 

  • Montanari, A., Rosso, R., Taqqu, M. S., 2000. A seasonal fractional ARIMA model applied to the Nile River monthly at Aswan. Water Resources Research, 36:1249–1259.

    Article  Google Scholar 

  • Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica 55, 703–708.

    Article  MATH  MathSciNet  Google Scholar 

  • Ooms, M., Franses, P.H., 2001. A seasonal periodic long memory model for monthly river flows. Environmental Modelling & Software, 16, 559–569.

    Article  Google Scholar 

  • Priestley, M.B., 1988. Non-linear and Non-stationary Time Series Analysis. London: Academic Press.

    Google Scholar 

  • Rao, A.R. Bhattacharya, D., 1999. Hypothesis testing for long-term memory in hydrological series. J. Hydrol., 216(3–4), 183–196.

    Article  Google Scholar 

  • Said, S.E., Dickey, D., 1984. Testing for unit roots in autoregressive movingaverage models with unknown order. Biometrika, 71, 599–607.

    Article  MATH  MathSciNet  Google Scholar 

  • Schwert, G.W., 1989. Tests for unit roots: A Monte Carlo investigation. J. Business Eco. Stat. 7, 147–159.

    Article  Google Scholar 

  • Shin, Y., Schmidt, P., 1992. The KPSS stationarity test as a unit root test. Economics Letters, 38, 387–392.

    Article  MATH  Google Scholar 

  • Sowell, F., 1992. Modeling Long-Run Behavior with the Fractional ARIMA Model, Journal of Monetary Economics, 29, 277–302.

    Article  Google Scholar 

  • Van Belle, G., Hughes, J. P., 1984. Nonparametric tests for trend in water quality. Water Resources Research, 20(1), 127–136.

    Google Scholar 

  • Van Gelder, P.H.A.J.M., 1999. Statistical Methods for the Risk-Based Design of Civil Structures, Communications on Hydraulic and Geotechnical Engineering, ISSN:0169–6548 00–1, 248pages.

    Google Scholar 

  • Vecchia, A.V., Ballerini, R., 1991. Testing for periodic autocorrelations in seasonal time series data, Biometrika, 78, 53–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Vecchia, A.V., 1985. Maximum Likelihood Estimation for periodic autoregressive moving average models. Technometrics, 27, 375–384.

    Article  Google Scholar 

  • Von Storch, H., 1995. Misuses of statistical analysis in climate research, In: Analysis of Climate Variability: Applications of Statistical Techniques, edited by H. V. Storch and A. Navarra, Springer-Verlag, New York, pp. 11–26.

    Google Scholar 

  • Zhang, X., Harvey, K. D., Hogg, W. D., Yuzyk, T. R., 2001. Trends in Canadian streamflow, Water Resources Research, 37(4), 987–998.

    Article  Google Scholar 

  • Zivot, E., Wang, J., 2002. Modelling Financial Time Series with S-Plus. New York: Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

van Gelder, P., WANG, W., VRIJLING, J.K. (2006). STATISTICAL ESTIMATION METHODS FOR EXTREME HYDROLOGICAL EVENTS. In: Vasiliev, O., van Gelder, P., Plate, E., Bolgov, M. (eds) Extreme Hydrological Events: New Concepts for Security. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5741-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5741-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5739-7

  • Online ISBN: 978-1-4020-5741-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics