Skip to main content

Abstract

In the past decade, the scientific community has witnessed a major leap in our understanding about how plant perceives and respond to abiotic stresses. Various candidates participating in this coordinated and orchestrated relays have been identified and their molecular mechanisms of operation have also been worked out. This analysis has clearly established a complex network of cellular machinery operative in plants under such conditions. Tools of functional genomics have been utilized to decipher the contributions of several of these individual components towards the complex stress response. Some of these studies have also been extended beyond model plants, and crop systems such as rice have been utilized to document the usefulness of some of these strategies towards genetic modifications of crop plants which are better adapted towards unfavorable environmental conditions. It is heartening to see the extension of few efforts beyond laboratory to field level testing. Indeed, a few of selected candidate genes have also passed these field level tests. However, it is also true that drought/salinity tolerant transgenic crop plants are yet away from the reach of farmers. A conscious deliberate and strategic action plan along with the right choice of battery of genes is required to achieve this important goal

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy MK and Sopory SK. (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25:1263–1274.

    PubMed  CAS  Google Scholar 

  • Amtmann A, Bohnert HJ and Bressan RA. (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol. 138:127–130.

    CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA and Blumwald E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258.

    PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815.

    Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A and Tanaka K. (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol. Plant. 121:231–238.

    PubMed  CAS  Google Scholar 

  • Bae H, Herman EM and Sicher Jr RC. (2005) Exogenous trehalose I induces chemical detoxification and stress response proteins and promotes nonstructural carbohydrate accumulation in Arabidopsis thaliana grown in liquid Culture. Plant Sci.168:1293–1301.

    CAS  Google Scholar 

  • Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA and Madkour MA. (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol. Plant. 123:421–427.

    CAS  Google Scholar 

  • Bajaj S and Mohanty A. (2005) Recent advances in rice biotechnology – towards genetically superior transgenic rice. Plant Biotechnol. J. 3:275–307.

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P and Ma S. (2006) Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr. Opin. Plant Biol. 9:180–188.

    PubMed  CAS  Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ and Zhu JK. (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol. 127:1354–1360.

    CAS  Google Scholar 

  • Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM and Salinas J. (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951.

    PubMed  CAS  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K and Loake GJ. (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J. 38:810–822.

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K and Zhu JK. (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J. Exp. Bot. 55:225–236.

    PubMed  CAS  Google Scholar 

  • Cho EK and Hong CB. (2006) Over-expression of tobacco NtHSP70–1 contributes to drought-stress tolerance in plants. Plant Cell Rep. 25:349–358.

    PubMed  CAS  Google Scholar 

  • Cortina C and Culianez-Macia FAB. (2005) Tomato abiotic stress enhanced tolerance by trehalose biosíntesis. Plant Sci. 169:75–82.

    CAS  Google Scholar 

  • Cuartero J, Bolarin MC, Asins MJ and Moreno V. (2006) Increasing salt tolerance in the tomato. J Exp. Bot. 57:1045–1058.

    PubMed  CAS  Google Scholar 

  • Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S and Majumder AL. (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett. 580:3980–3988.

    PubMed  CAS  Google Scholar 

  • De Las Mercedes Dana M, Pintor-Toro JA and Cubero B. (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol. Epublished ahead of print.

    Google Scholar 

  • Dezar CA, Gago GM, Gonzalez DH and Chan RL. (2005) Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Trans. Res. 14:429–440.

    CAS  Google Scholar 

  • Dhlamini Z, Spillane C, Moss JP, Ruane J, Urquia N and Sonnino A. (2005) FAO research and technology development service status of research and application of crop biotechnologies in developing countries. Preliminary assessment: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Ellul P, Rios G, Atares A, Roig LA, Serrano R and Moreno V. (2003) The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theor. Appl. Genet. 107:462–469.

    PubMed  CAS  Google Scholar 

  • Foyer CH and Noctor G. (2005) Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875.

    PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LP, Yamaguchi-Shinozaki K and Shinozaki K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39:863–873.

    PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K and Shinozaki K. (2006) Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9:436–442.

    PubMed  Google Scholar 

  • Fukushima E, Arata Y, Endo T, Sonnewald U and Sato F. (2001) Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol. 42:245–249.

    PubMed  CAS  Google Scholar 

  • Galinski EA, Pfeiffer HP and Truper HG. (1985) 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur. J Biochem. 149:135–139.

    PubMed  CAS  Google Scholar 

  • Galston AW and Kaur-Sawhney R. (1990) Polyamines in plant physiology. Plant Physiol.94:406–410.

    Article  PubMed  CAS  Google Scholar 

  • Gapper C and Dolan L. (2006) Control of plant development by reactive oxygen species. Plant Physiol. 141:341–345.

    PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV and Wu RJ. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA 99:15898–15903.

    PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL and Fink GR. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. USA. 98:11444–11449.

    PubMed  CAS  Google Scholar 

  • Ghosh-Dastidar, Maitra S, Goswami L, Roy D, Das KP and Majumder AL. (2006) An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol. 40:1279–1296.

    Google Scholar 

  • Gisbert C, Rus AM, Bolarin MC, Lopez-Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R and Moreno V. (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol. 123:393–402

    PubMed  CAS  Google Scholar 

  • Goddijn OJM and VanDun K. (1999) Trehalose metabolism in plants. Trends Pl. Sci. 4:315–319.

    Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A and Briggs S. (2002) A draft sequence of the rice genome (Oryza sativa L. sp. japonica). Science 296:92–100.

    CAS  Google Scholar 

  • Goyal K, Walton LJ and Tunnacliffe A. (2005) LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388:151–157.

    PubMed  CAS  Google Scholar 

  • Grennan AK. (2006) Abiotic stress in rice. An “omic” approach. Plant Physiol. 140:1139–1141.

    PubMed  CAS  Google Scholar 

  • Grover A, Agarwal PK, Kapoor A, Katiyar-Agarwal S and Agarwal M. (2003) Production of abiotic stress tolerant transgenic crops:present accomplishments and future needs. Curr. Sci. 84:355–367.

    Google Scholar 

  • Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS and Zhu JK. (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449.

    PubMed  CAS  Google Scholar 

  • Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S, Zhao Y and Zhang H. (2006) Molecular cloning and characterization of a vacuolar H+ -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol. Biol.60:41–50.

    PubMed  CAS  Google Scholar 

  • Hayashi H, Alia, Mustardy L, Deshnium P, Ida M and Murata N. (1997) Transformation of Arabidopsis thaliana with the cod A gene for choline oxidase: accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J.12:133–142.

    PubMed  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS and Chen SY. (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44:903–916.

    PubMed  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z and Verma DP. (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122:1129–1136.

    PubMed  CAS  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X and Jiang X. (2005) Overexpression of mtID gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol. 25:1273–1281.

    PubMed  CAS  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA and Zhu JK. (2004) Salt stress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol. 135:1718–1737.

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800.

    Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH and Kim JK. (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131:516–524.

    PubMed  CAS  Google Scholar 

  • Jeong MJ, Park SC and Byun MO. (2001) Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Mol. Cell 12:185–189.

    CAS  Google Scholar 

  • Jin Y, Weining S and Nevo E. (2005) A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing:Prospects for saline agriculture. Proc. Natl. Acad. Sci. USA 102:18992–18997.

    PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C and Kjellbom P. (2000) The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta 1465:324–342.

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K and Shinozaki K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287–291.

    PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K. (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45:346–350.

    PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I and Tachibana S. (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 45:712–722.

    PubMed  CAS  Google Scholar 

  • Kavi Kishore PB, Hong Z, Miao GH, Hu CA and Verma DPS. (1995) Overexpression of pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387–1394

    Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH and Kim SY. (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40:75–87.

    PubMed  CAS  Google Scholar 

  • Ko JH, Yang SH and Han KH. (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J. 47:343–355.

    PubMed  CAS  Google Scholar 

  • Koh Eun-Ji, Won-Yong Song, Youngsook Lee, Kyoung Heon Kim, Kideok Kim, Namhyun Chung, Kwang-Won Lee, Suk-Whan Hong and Hojoung Lee. (2006) Expression of yeast cadmium factor 1 (YCF1) confers salt tolerance to Arabidopsis thaliana. Plant Sci. 170:534–541.

    CAS  Google Scholar 

  • Kwak KJ, Kim YO and Kang H. (2005) Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp. Bot. 56:3007–3016.

    PubMed  CAS  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM and Kwak SS. (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol. 160:347–353.

    PubMed  CAS  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S and Gaxiola R. (2005) Arabidopsis H+-PPase AVP1 regulates auxin- mediated organ development. Science 310:121–125.

    PubMed  CAS  Google Scholar 

  • Light GG, Mahan JR, Roxas VP and Allen RD. (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222:346–354.

    PubMed  CAS  Google Scholar 

  • Lilius G, Holmberg N and Bulow L. (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. BioTechnol. 14:177–180

    CAS  Google Scholar 

  • Lippert K and Galinski EA. (1992) Enzyme stabilisation by ectoine-type compatible solutes:protection against heating, freezing and drying. Appl. Microbiol. Biotechnol. 37:61–65.

    CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K and Shinozaki K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406.

    PubMed  CAS  Google Scholar 

  • Luo GZ, Wang HW, Huang J, Tian AG, Wang YJ, Zhang JS and Chen SY. (2005) A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol. Biol. 59:809–820.

    PubMed  CAS  Google Scholar 

  • Luo M, Gu SH, Zhao SH, Zhang F and Wu NH. (2006) Rice GTPase OsRacB:potential accessory factor in plant salt-stress signaling. Acta Biochim. Biophys. Sin. (Shanghai). 38:393–402.

    CAS  Google Scholar 

  • Ma X, Qian Q and Zhu D (2005). Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol. Biol. 58:483–495.

    PubMed  CAS  Google Scholar 

  • Mahalakshmi S, Christopher GS, Reddy TP, Rao KV and Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–359.

    PubMed  CAS  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP and Majumder AL. (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol. Chem. 279:28539–28552.

    PubMed  CAS  Google Scholar 

  • Malik V and Wu R. (2005) Transcription factor AtMyb2 increased salt-stress tolerance in rice (Oryza sativa L.) Rice Genet. Newslett. 22:63.

    Google Scholar 

  • Marin-Manzano MC, Rodriguez-Rosales MP, Belver A, Donaire JP and Venema K. (2004) Heterologously expressed protein phosphatase calcineurin downregulates plant plasma membrane H+-ATPase activity at the post-translational level. FEBS Lett. 576:266–270.

    PubMed  CAS  Google Scholar 

  • Matityahu I, Kachan L, Bar Ilan I and Amir R. (2006) Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibit enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress. Amino Acids 30:185–194.

    PubMed  CAS  Google Scholar 

  • Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410.

    PubMed  CAS  Google Scholar 

  • Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Sci. 11:15–19.

    CAS  Google Scholar 

  • Moghaieb REA, Tanaka N, Saneoka H and Kounosuke F. (2004) Expression of ectoine biosynthetic genes in tobacco plants (Nicotiana tabaccum) leads to the maintenance of osmotic potential under salt stress. 4th International Crop Science Congress.

    Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N and Tyagi AK. (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet. 106:51–57.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Vij S and Tyagi AK. (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA 101:6309–6314.

    PubMed  CAS  Google Scholar 

  • Nakayama H, Yoshida K, Ono H, Murooka y and Shinmyo A. (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol. 122:1239–1247.

    PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K and Shinozaki K. (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett.461:205–210.

    PubMed  CAS  Google Scholar 

  • Ogawa K. (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid. Redox Signal 7:973–981.

    PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH and Kim JK. (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138:341–351.

    PubMed  CAS  Google Scholar 

  • Ohara K, Kokado Y, Yamamoto H, Sato F and Yazaki K. (2004) Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco. Plant J. 40:734–743.

    PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL and Skriver K. (2005) NAC transcription factors:structurally distinct, functionally diverse. Trends Plant Sci. 10:79–87.

    PubMed  CAS  Google Scholar 

  • Olsson P, Yilmaz JL, Sommarin M, Persson, S and Bulow L. (2004) Expression of bovine calmodulin in tobacco plants confers faster germination on saline media. Plant Sci. 166:1595–1604.

    CAS  Google Scholar 

  • Oraby HF, Ransom CB, Kravchenko AN and Sticklen MB.(2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci. 45:2218–2227.

    CAS  Google Scholar 

  • Owttrim GW. (2006) RNA helicases and abiotic stress. Nuc. Acids Res. 34:3220–3230.

    CAS  Google Scholar 

  • Palmgren MG. (2001) Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:817–845.

    PubMed  CAS  Google Scholar 

  • Pandey GK, Reddy VS, Reddy MK, Deswal R, Bhattacharya A and Sopory SK. (2002) Transgenic tobacco expressing Entamoeba histolytica calcium binding protein exhibits enhanced growth and tolerance to salt stress. Plant Sci. 162:41–47.

    CAS  Google Scholar 

  • Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA, Paino-D’Urzo M, Koiwa H, Yun DJ, Watad AA, Bressan RA and Hasegawa PM. (1998) Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA. 95:9681–9686.

    PubMed  CAS  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD and Gaxiola RA. (2005a) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Natl. Acad. Sci. USA. 102:18830–18835.

    CAS  Google Scholar 

  • Park BJ, Liu Z, Kanno A and Kameya T. (2005b) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Rep. 24:494–500.

    CAS  Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R and Ranty B. (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J. 38:410–420.

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, Van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH and Goddijn OJM. (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol. 152:525–532.

    CAS  Google Scholar 

  • Pitzschke A and Hirt H. (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol. 141:351–356.

    PubMed  CAS  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA and Pardha Saradhi P. (2000) Transformation of Brassica juncea L. Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed. 6:489–499.

    CAS  Google Scholar 

  • Rai M, Pal M, Sumesh KV, Jain V and Sankaranarayanan A. (2006) Engineering for biosynthesis of ectoine (2-methyl 4-carboxy tetrahydro pyrimidine) in tobacco chloroplasts leads to accumulation of ectoine and enhanced salinity tolerance. Plant Sci.170:291–306.

    CAS  Google Scholar 

  • Rajam MV. (1997) Polyamines in Plant Ecophysiology pp. 343–374 ed MNV Prasad (New York:John Wiley).

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S and Lin HX. (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet.37:1141–1146.

    PubMed  CAS  Google Scholar 

  • Rodrigues SM, Andrade MO, Gomes AP, Damatta FM, Baracat-Pereira MC and Fontes EP. (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp. Bot. 57:1909–1918.

    PubMed  CAS  Google Scholar 

  • Romero C, Belles JM, Vaya JL, Serrano R and Culianez-Macia FA. (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297.

    CAS  PubMed  Google Scholar 

  • Roxas VP, Smith RK, Allen ER and Allen RD. (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15:988–991.

    PubMed  CAS  Google Scholar 

  • Sahi C, Agarwal M, Reddy MK, Sopory SK and Grover A. (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theor. Appl. Genet. 106:620–628.

    PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K and Izui K. (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319–327.

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Alia and Murata N. (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38:1011–1019.

    PubMed  CAS  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK and Tuteja N. (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA. 102:509–514.

    PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA and Jacobsen E. (2006) Cisgenic plants are similar to traditionally bred plants:international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep. 7:750–753.

    PubMed  CAS  Google Scholar 

  • Shen V, Jensen RG, and Bohnert HJ. (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113:1177–1183.

    PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ and Zhu JK. (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21:81–85.

    PubMed  CAS  Google Scholar 

  • Shirasawa K, Takabe T, Takabe T and Kishitani S. (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann. Bot. (Lond). 98:565–571.

    CAS  Google Scholar 

  • Shukla RK, Raha S, Tripathi V and Chattopadhyay D. (2006) Expression of CAP2, an AP2-family transcription factor from chickpea enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol. Epublished ahead of print.

    Google Scholar 

  • Singla-Pareek SL, Reddy MK and Sopory SK. (2001) Transgenic approach towards developing abiotic stress tolerance in plants. Proc. Indian Natn. Sci. Acad. 67:265–284.

    CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK and Sopory SK. (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. USA 100:4672–14677.

    Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK and Sopory SK. (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol. 140:613–623.

    PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Altschmied L, Radchuk V, Gubatz S, Wobus U and Weschke W. (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J. 37:539–553.

    PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ and Thomashow MF. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA. 94:1035–1040.

    PubMed  CAS  Google Scholar 

  • Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen TH and Murata N. (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J. 36:165–176.

    PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M and Verbruggen N. (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 27:407–415

    PubMed  CAS  Google Scholar 

  • Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V and Mittler R. (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 139:1313–1322.

    PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK and Shinozaki K. (2004) Comparative genomics in salt tolerance between Arabidopsis and a Arabidopsis-related halophyte salt stress using Arabidopsis microarray. Plant Physiol. 135:1697–1709.

    PubMed  CAS  Google Scholar 

  • Tang W, Charles TM and Newton RJ. (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol. Biol. 59:603–617.

    PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ, Lin J and Charles TM. (2006a) Expression of a transcription factor from Capsicum annuum in pine calli counteracts the inhibitory effects of salt stress on adventitious shoot formation. Mol. Gen. Genomics 276:242–253.

    CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS and Lee HS. (2006b) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep. [Epublished ahead of print]

    Google Scholar 

  • Tarczynski MC, Jensen RG and Bohnert HJ. (1993) Stress protection of the transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510.

    PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, and Bohnert HJ. (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production of accumulation of mannitol. Proc. Natl. Acad. Sci. USA89:2600–2604.

    PubMed  CAS  Google Scholar 

  • Tausz M, Sircelj H and Grill D. (2004) The glutathione system as a stress marker in plant ecophysiology:is a stress-response concept valid? J Exp. Bot. 55:1955–1962.

    PubMed  CAS  Google Scholar 

  • Thomas JC, Sepahi M, Arendall B, and Bohnert HJ. (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana; Plant Cell Environ. 18:801–806.

    CAS  Google Scholar 

  • Tiburcio AF, Campos JL, Figueras X, and Besford RT. (1993) Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul.12:331–340.

    CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K and Shinozaki K. (2006) Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17:113–122.

    PubMed  CAS  Google Scholar 

  • Valliyodan B and Nguyen HT. (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9:189–195.

    PubMed  CAS  Google Scholar 

  • Van Breusegem F and Dat JF. (2006) Reactive oxygen species in plant cell death. Plant Physiol. 141:384–390.

    PubMed  Google Scholar 

  • Vashisht AA, Pradhan A, Tuteja R and Tuteja N. (2005) Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J. 44:76–87.

    PubMed  CAS  Google Scholar 

  • Veena, Reddy VS and Sopory SK (1999). Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J. 17:385–395.

    PubMed  CAS  Google Scholar 

  • Vinocur B and Altman A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotechnol. 16:123–132.

    PubMed  CAS  Google Scholar 

  • Waie B and Rajam MV. (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci. 164:727–734.

    CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS and Su WA. (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol. 162:465–472.

    PubMed  CAS  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D and Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol. Biol. 55:183–192.

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B and Altman A. (2003) Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta 218:1–14.

    PubMed  CAS  Google Scholar 

  • Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA and Griffith M. (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol. Biol. 58:561–574.

    PubMed  CAS  Google Scholar 

  • Xiong L and Yang V. (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic Acid-inducible mitogen-activated protein kinase. Plant Cell15:45–59.

    Google Scholar 

  • Xue, ZY, Zhi, DY, Xue, GP, Zhang, H, Zhao, YX, and Xia, GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 167:849–859.

    CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK and Sopory SK. (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett. 579:6265–6271.

    PubMed  CAS  Google Scholar 

  • Yamaguchi T and Blumwald E. (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10:615–620.

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K and Shinozaki K. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57:781–803.

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT and Takabe T. (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp. Bot. 56:1785–1796.

    PubMed  CAS  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD and Zhang H. (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol. 45:1007–1014.

    PubMed  CAS  Google Scholar 

  • Yang SX, Zhao YX, Zhang Q, He YK, Zhang H and Luo D. (2001) HAL1 mediate salt adaptation in Arabidopsis thaliana. Cell Res. 11:142–148.

    PubMed  CAS  Google Scholar 

  • Yeo ET , Kwon HB, Han SE, Lee JT, Ryu JC and Byu MO. (2000) Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol. Cell 10:263–268.

    CAS  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS and Cho MJ. (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem.280:3697–3706.

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H and Shigeoka S. (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J. 37:21–33.

    PubMed  CAS  Google Scholar 

  • Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, Cao ML, Liu J, Sun JD, Tang JB, Chen YJ, Huang XB, Lin W, Ye C, Tong W, Cong LJ, Geng JN, Han YJ, Li L, Li W, Hu GQ, Huang XG, Li WJ, Li J, Liu ZW, Li L, Liu JP, Qi QH, Liu JS, Li L, Li T, Wang XG, Lu H, Wu TT, Zhu M, Ni PX, Han H, Dong W, Ren XY, Feng XL, Cui P, Li XR, Wang H, Xu X, Zhai WX, Xu Z, Zhang JS, He SJ, Zhang JG, Xu JC, Zhang KL, Zheng XW, Dong JH, Zeng WY, Tao L, Ye J, Tan J, Ren XD, Chen XW, He J, Liu DF, Tian W, Tian CG, Xia HG, Bao QY, Li G, Gao H, Cao T, Wang J, Zhao WM, Li P, Chen W, Wang XD, Zhang Y, Hu JF, Wang J, Liu S, Yang J, Zhang GY, Xiong YQ, Li ZJ, Mao L, Zhou CS, Zhu Z, Chen RS, Hao BL, Zheng WM, Chen SY, Guo W, Li GJ, Liu SQ, Tao M, Wang J, Zhu LH, Yuan LP and Yang HM. (2002) A draft sequence of the rice genome (Oryza sativa L. sp. indica). Science 296:79–92.

    CAS  Google Scholar 

  • Zhang HX and Blumwald E. (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit; Nat. Biotechnol. 19:765–768.

    CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW and Wang ZY. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42:689–707.

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA and Zhu JK. (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 135:615–621.

    PubMed  CAS  Google Scholar 

  • Zhao F, Wang Z, Zhang Q, Zhao Y and Zhang H. (2006a) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J. Plant Res. 119:95–104.

    CAS  Google Scholar 

  • Zhao F, Zhang X, Li P, Zhao Y and Zhang H. (2006b) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol. Breed. 17:341–354.

    Google Scholar 

  • Zhu B, Su J, Chang MC, Verma DPS, Fan YL and Wu R. (1998) Overexpression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci. 139:41–48.

    CAS  Google Scholar 

  • Zhu JK. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247–273.

    PubMed  CAS  Google Scholar 

  • Zielinski RE. (1998) Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:697–725.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Singla-Pareek, S.L., Pareek, A., Sopory, S.K. (2007). Transgenic Plants for Dry and Saline Environments. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_20

Download citation

Publish with us

Policies and ethics