Skip to main content

BIO-AEROSOL FLUORESCENCE

Detecting and characterising bio-aerosols via UV light-induced fluorescence spectroscopy

  • Conference paper
Optics of Biological Particles

Abstract

All aspects of fluorescence from a single or a cluster of bio-aerosol particles are treated in this chapter. The following topics are covered: light sources to induce fluorescence, detectors to sense fluorescence, excitation and emission spectra from simulants of known threat bio-aerosols, standards for monitoring aerosols, performance metrics, generation of dry and wet simulant bioaerosols, examples of commercially available bio-sensors, techniques for enriching aerosol samples by aerodynamic puffing, and the need for an identifier following the enrichment of aerosols sorted according to the aerosols’ fluorescence spectra. There is general agreement that fluorescence is a discriminator capable of separating bio- from non-bio-aerosols; however, an appropriate particle identifier has yet to be fully adapted to the monitoring of threat aerosols in the highly variable atmospheric environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Agranovski, V., Ristovski, K., Hargreaves, M., Blackall, P.J., and Morawska, L., 2003, Real-time measurement of bacterial aerosols with the UVAPS: Performance evaluation, J Aerosol Sci, 34: 301–317.

    Article  Google Scholar 

  • Asano, K., Miyatake, Y., Yatsuzuka, K., and Higashyama, Y., 1997, The Eeffect of Particle Velocity on Electrostatic Particle Sorting, Journal of Electrostatic, 42: 17–23.

    Article  Google Scholar 

  • Atkins, P., and Friedman, E. 2005. Molecular Quantum Mechanics (4th ed.). Oxford University press, Oxford New York.

    Google Scholar 

  • Beddows, D.C.S., and Telle, H.H., 2005, Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry, Spectrochim Acta B, 60(7–8): 1040–1059.

    Article  ADS  Google Scholar 

  • Belgrader, P., Benett, W., Hadley, D., Richards, J., Stratton, P., Mariella, R., and Milanovich, F., 1999, Infectious disease - PCR detection of bacteria in seven minutes, Science, 284(5413): 449–450.

    Article  Google Scholar 

  • Ben-David, A., and Ren, H., 2003, Detection, identification, and estimation of biological aerosols and vapors with a Fourier-transform infrared spectrometer, Appl Optics, 42(24): 4887–4900.

    Article  ADS  Google Scholar 

  • Bottiger, J.R., Deluca, P.J., Stuebing, E.W., and VanReenen, D.R., 1998, An Ink-Jet Aerosol Generator, J Aerosol Sci, 29(suppl. 1): s965–s966.

    Article  Google Scholar 

  • Brahma, S.K., Baek, M.P., Gaskill, D., Force, R.K., Nelson, W.H., and Sperry, J, 1985, The Rapid Identification of Bacteria Using Time-Resolved Fluorescence and Fluorescence Excitation Spectral Methods, Appl Spectrosc, 39(5): 869–872.

    Article  ADS  Google Scholar 

  • Campbell, J.C., Demiguel, S., Ma, F., Beck, A., Guo, X.Y., Wang, S.L., Zheng, X.G., X.W. Li, J.D.B., Kinch, M.A., Huntington, A., Coldren, L.A., Decober, J., and Tscherptner, N., 2004, Recent Advances in Avalanche Photodiodes, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 10(4): 777–787.

    Article  Google Scholar 

  • Carranza, J.E., Gibb, E., Smith, B.W., Hahn, D.W., and Winefordner, J.D., 2003, Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy, Appl Optics, 42(30): 6017–6021.

    ADS  Google Scholar 

  • Castanho, M.A.R.B., 2002, Teaching molecular applications of the particle-in-a-ring model using azulene, J Chem Educ, 79(9): 1092–1093.

    Article  Google Scholar 

  • Chadha, S., Nelson, W.H., and Sperry, J.F., 1993, Ultraviolet Micro-Raman Spectrograph for the Detection of Small Numbers of Bacterial-Cells, Rev Sci Instrum, 64(11): 3088–3093.

    Article  ADS  Google Scholar 

  • Chen, G., Nachman, P., Pinnick, R.G., Hill, S.C., and Chang, R.K., 1996, Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation, Opt Lett, 21(16): 1307–1309.

    Article  ADS  Google Scholar 

  • Cheng, Y.S., Barr, E.B., Fan, B.J., Hargis, P.J., Rader, D.J., O’Hern, T.J., Torczynski, J.R., Tisone, G.C., Preppernau, B.L., Young, S.A., and Radloff, R.J., 1999, Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy, Aerosol Sci Tech, 30(2): 186–201.

    Article  Google Scholar 

  • Courvoisier, F., Boutou, V., Wood, V., Bartelt, A., Roth, M., Rabitz, H., and Wolf, J.P., 2005, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl Phys Lett, 87(6): -.

    Google Scholar 

  • Cox, C., Wathes, C., and edited 1995. Bio-aerosols handbook. Oxford University press, Oxford New York.

    Google Scholar 

  • Dalterio, R.A., Nelson, W.H., Britt, D., Sperry, J.F., Tanguay, J.F., and Suib, S.L., 1987, The Steady-State and Decay Characteristics of Primary Fluorescence from Live Bacteria, Appl Spectrosc, 41(2): 234–241.

    Article  ADS  Google Scholar 

  • Dalterio, R.A., Nelson, W.H., Britt, D., Sperry, J., Psaras, D., Tanguay, J.F., and Suib, S.L., 1986, Steady-State and Decay Characteristics of Protein Tryptophan Fluorescence from Bacteria, Appl Spectrosc, 40(1): 86–90.

    Article  ADS  Google Scholar 

  • Dautet, H., Deschamps, P., Dion, B., MacGregor, A.D., MacSween, D., McIntyre, R.J., Trottier, C., and Webb, P.P., 1993, Photon counting techniques with silicon avalanche photodiodes, Appl Optics, 32(21): 3895–3900.

    ADS  Google Scholar 

  • Davitt, K., Song, Y.K., Patterson, W.R., Nurmikko, A.V., Gherasimova, M., Han, J., Pan, Y.L., and Chang, R.K., 2005, 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles, Optics Express, 13(23): 9548–9555.

    Article  ADS  Google Scholar 

  • Demtroder, W. 1982. Laser spectroscopy: Basic concepts and instrumentation. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Denvir, D.J., and Coates, C.G., 2002, Electron-multiplying CCD technology: application to ultrasensitive detection of biomolecules, Proc. SPIE, Biomedical Nanotechnology Architectures and Applications, 4626: 502–512.

    ADS  Google Scholar 

  • Duarte, R.M.B.O., Pio, C.A., and Duarte, A.C., 2004, Synchronous scan and excitation-emission matrix fluorescence spectroscopy of water-soluble organic compounds in atmospheric aerosols, J Atmos Chem, 48(2): 157–171.

    Article  Google Scholar 

  • Eversole, J.D., Hardgrove, J.J., Cary, W.K., Choulas, D.P., and Seaver, M., 1999, Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results, Field Anal Chem Tech, 3(4-5): 249–259.

    Article  Google Scholar 

  • Eversole, J.D., Cary, W.K., Scotto, C.S., Pierson, R., Spence, M., and Campillo, A.J., 2001, Continuous bio-aerosol monitoring using UV excitation fluorescence: Outdoor test results, Field Anal Chem Tech, 5(4): 205–212.

    Article  Google Scholar 

  • Faris, G.W., Copeland, R.A., Mortelmans, K., and Bronk, B.V., 1997, Spectrally resolved absolute fluorescence cross sections for Bacillus spores, Appl Optics, 36(4): 958–967.

    Article  ADS  Google Scholar 

  • Fisher, M., Bulatov, V., Hasson, S., and Schechter, I., 1998, Fast aerosol analysis by Fourier transform imaging fluorescence microscopy, Analytical Chemistry, 70(11): 2409–2414.

    Article  Google Scholar 

  • Flury, B. 1988. Common principal components and related multivariate models. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore.

    MATH  Google Scholar 

  • Frain, M., Schmidt, D.P., Pan, Y.L., and Chang, R.K., 2006, Selective deflection and localization of flowing aerosols onto a substrate, Aerosol Sci Tech, 40(3): 218–225.

    Article  Google Scholar 

  • Giana, H.E., Silveira, L., Zangaro, R.A., and Pacheco, M.T.T., 2003, Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis, Journal of Fluorescence, 13(6): 489–493.

    Article  Google Scholar 

  • Gittins, C.M., Piper, L.G., Rawlins, W.T., Marinelli, W.J., Jensen, J.O., and Akinyemi, A.N., 1999, Passive and active standoff infrared detection of bio-aerosols, Field Anal Chem Tech, 3(4–5): 274–282.

    Article  Google Scholar 

  • Gray, P.C., Shokair, I.R., Rosenthal, S.E., Tisone, G.C., Wagner, J.S., Rigdon, L.D., Siragusa, G.R., and Heinen, R.J., 1998, Distinguishability of biological material by use of ultraviolet multispectral fluorescence, Appl Optics, 37(25): 6037–6041.

    Article  ADS  Google Scholar 

  • Hagleitner, C., Hierlemann, A., Lange, D., Kummer, A., Kerness, N., Brand, O., and Baltes, H., 2001, Smart single-chip gas sensor microsystem, Nature, 414(6861): 293–296.

    Article  ADS  Google Scholar 

  • Hahn, D.W., Miziolek, A.W., and Palleschi, V., 2003, Laser-induced breakdown spectroscopy: an introduction to the feature issue, Appl Optics, 42(30): 5937–5937.

    Article  ADS  Google Scholar 

  • Hairston, P.P., Ho, J., and Quant, F.R., 1997, Design of an instrument for real-time detection of bio-aerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence, J Aerosol Sci, 28(3): 471–482.

    Article  Google Scholar 

  • Harris, W.A., Reilly, P.T.A., and Whitten, W.B., 2005, MALDI of individual biomolecule-containing airborne particles in an ion trap mass spectrometer, Analytical Chemistry, 77(13): 4042–4050.

    Article  Google Scholar 

  • Hettinger, B., Hohreiter, V., Swingle, M., and Hahn, D.W., 2006, Laser-induced breakdown spectroscopy for ambient air particulate monitoring: Correlation of total and speciated aerosol particle counts, Appl Spectrosc, 60(3): 237–245.

    Article  ADS  Google Scholar 

  • Hill, S.C., Pinnick, R.G., and Nachman, P., 1996, Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles, Appl Optics, 35(7): 1069–1076.

    Article  ADS  Google Scholar 

  • Hill, S.C., Pinnick, R.G., Nachman, P., Chen, G., Chang, R.K., Mayo, M.W., and Fernandez, G.L., 1995, Aerosol-Fluorescence Spectrum Analyzer - Real-Time Measurement of Emission-Spectra of Airborne Biological Particles, Appl Optics, 34(30): 7149–7155.

    Article  ADS  Google Scholar 

  • Hill, S.C., Boutou, V., Yu, J., Ramstein, S., Wolf, J.P., Pan, Y.L., Holler, S., and Chang, R.K., 2000, Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities, Phys Rev Lett, 85(1): 54–57.

    Article  ADS  Google Scholar 

  • Hill, S.C., Pinnick, R.G., Niles, S., Fell, N.F., Pan, Y.L., Bottiger, I., Bronk, B.V., Holler, S., and Chang, R.K., 2002, Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity (vol 40, pg 3005, 2001), Appl Optics, 41(21): 4432–4432.

    Article  ADS  Google Scholar 

  • Hill, S.C., Pinnick, R.G., Niles, S., Pan, Y.L., Holler, S., Chang, R.K., Bottiger, J., Chen, B.T., Orr, C.S., and Feather, G., 1999, Real-time measurement of fluorescence spectra from single airborne biological particles, Field Anal Chem Tech, 3(4–5): 221–239.

    Article  Google Scholar 

  • Ho, J., 2002, Future of biological aerosol detection, Anal Chim Acta, 457(1): 125–148.

    Article  Google Scholar 

  • Holler, S., Pan, Y.L., Chang, R.K., Bottiger, J.R., Hill, S.C., and Hillis, D.B., 1998, Two-dimensional angular optical scattering for the characterization of airborne microparticles, Opt Lett, 23(18): 1489–1491.

    Article  ADS  Google Scholar 

  • Holler, S., Zomer, S., Crosta, G.F., Pan, Y.L., Chang, R.K., and Bottiger, J.R., 2004, Multivariate analysis and classification of two-dimensional angular optical scattering patterns from aggregates, Appl Optics, 43(33): 6198–6206.

    Article  ADS  Google Scholar 

  • Holler, S., Auger, J.C., Stout, B., Pan, Y., Bottiger, J.R., Chang, R.K., and Videen, G., 2000, Observations and calculations of light scattering from clusters of spheres, Appl Optics, 39(36): 6873–6887.

    Article  ADS  Google Scholar 

  • Hybl, J.D., Lithgow, G.A., and Buckley, S.G., 2003, Laser-induced breakdown spectroscopy detection and classification of biological aerosols, Appl Spectrosc, 57(10): 1207–1215.

    Article  ADS  Google Scholar 

  • Jarvis, R.M., Brooker, A., and Goodacre, R., 2006, Surface-enhanced Raman scattering for the rapid discrimination of bacteria, Faraday Discuss, 132: 281–292.

    Article  ADS  Google Scholar 

  • Kaye, P.H., Eyles, N.A., Ludlow, I.K., and Clark, J.M., 1991, An Instrument for the Classification of Airborne Particles on the Basis of Size, Shape, and Count Frequency, Atmos Environ a-Gen, 25(3–4): 645–654.

    Google Scholar 

  • Kaye, P.H., Barton, J.E., Hirst, E., and Clark, J.M., 2000, Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles, Appl Optics, 39(21): 3738–3745.

    Article  ADS  Google Scholar 

  • Kaye, P.H., Hirst, E., Foot, V.E., Clark, J.M., and Baxter, K., 2004, A low-cost multichannel aerosol fluorescence sensor for networked deployment, Proc. SPIE European Symposium Optics/Photonics in Security and Defence, London, 5617: 388–398.

    ADS  Google Scholar 

  • Kaye, P.H., Stanley, W.R., Hirst, E., Foot, E.V., Baxter, K.L., and Barrington, S.J., 2005, Single particle multichannel bio-aerosol fluorescence sensor, Optics Express, 13(10): 3583–3593.

    Article  ADS  Google Scholar 

  • Kuhn, H., 1949, A Quantum-Mechanical Theory of Light Absorption of Organic Dyes and Similar Compounds, J Chem Phys, 17(12): 1198–1212.

    Article  ADS  Google Scholar 

  • Kume, H. 1994. Photomultiplier tube. Hamamatsu Photonics K.K., Japan.

    Google Scholar 

  • Kunnil, J., Sarasanandarajah, S., Chacko, E., and Reinisch, L., 2005a, Fluorescence quantum efficiency of dry Bacillus globigii spores, Optics Express, 13(22): 8969–8979.

    Article  ADS  Google Scholar 

  • Kunnil, J., Sarasanandarajah, S., Chacko, E., Swartz, B., and Reinisch, L., 2005b, Identification of Bacillus spores using clustering of principal components of fluorescence data, Aerosol Sci Tech, 39(9): 842–848.

    Article  Google Scholar 

  • Lakowicz, J. 1999. Principles of fluorescence spectroscopy (2nd ed.). Kluwer Acadimic/Plenum Publisher, New York Boston Dordrecht London Moscow.

    Google Scholar 

  • Leblanc, L., and Dufour, E., 2002, Monitoring the identity of bacteria using their intrinsic fluorescence, FEMS Microbiology Letters, 211: 147–153.

    Article  Google Scholar 

  • Makino, S.I., Cheun, H.I., Watarai, M., Uchida, I., and Takeshi, K., 2001, Detection of anthrax spores from the air by real-time PCR, Lett Appl Microbiol, 33(3): 237–240.

    Article  Google Scholar 

  • Manoharan, R., Ghiamati, E., Sperry, J.F., and Nelson, W.H., 1990, Rapid Bacterial Id Via Resonance Raman-Spectroscopy, Abstr Pap Am Chem S, 200:138-Biot.

    Google Scholar 

  • Manoharan, R., Ghiamati, E., Chadha, S., Nelson, W.H., and Sperry, J.F., 1993, Effect of Cultural Conditions on Deep Uv Resonance Raman-Spectra of Bacteria, Appl Spectrosc, 47(12): 2145–2150.

    Article  ADS  Google Scholar 

  • Martin, M.Z., Cheng, M.D., and Martin, R.C., 1999, Aerosol measurement by laser-induced plasma technique: A review, Aerosol Sci Tech, 31(6): 409–421.

    Article  Google Scholar 

  • Melamed, M.R., Lindmo, T., and Mendelsohn, M.L. 1990. Flow Cytometry and Sorting. A John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Murray, P.R., Baron, E.J., and Pfaller, M.A. 2003. Manual of Clinical Microbiology. Ameronican Society for Microbiology, New York.

    Google Scholar 

  • Mycek, M.A., and Pogue, B. 2003. Handbook of Biomedical Fluorescence. Marcel Dekker, inc. New York Basel.

    Google Scholar 

  • Nachman, P., Chen, G., Pinnick, R.G., Hill, S.C., Chang, R.K., Mayo, M.W., and Fernandez, G.L., 1996, Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles, Appl Optics, 35(7): 1069–1076.

    Article  ADS  Google Scholar 

  • Nelson, W.H., Manoharan, R., and Sperry, J.F., 1992, Uv Resonance Raman Studies of Bacteria, Appl Spectrosc Rev, 27(1): 67–124.

    Article  ADS  Google Scholar 

  • Nelson, W.H., Dasari, R., Feld, M., and Sperry, J.F., 2004, Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light, Appl Spectrosc, 58(12): 1408–1412.

    Article  ADS  Google Scholar 

  • O’Neill, L., Lynch, P., McNamara, M., and Byrne, H.J., 2005, Structure property relationships in conjugated organic systems, Synthetic Met, 153(1–3): 289–292.

    Article  Google Scholar 

  • Pan, Y.L., Aptowicz, K.B., Chang, R.K., Hart, M., and Eversole, J.D., 2003a, Characterizing and monitoring respiratory aerosols by light scattering, Opt Lett, 28(8): 589–591.

    Article  ADS  Google Scholar 

  • Pan, Y.L., Hartings, J., Pinnick, R.G., Hill, S.C., Halverson, J., and Chang, R.K., 2003b, Single-particle fluorescence spectrometer for ambient aerosols, Aerosol Sci Tech, 37(8): 628–639.

    Article  Google Scholar 

  • Pan, Y.L., Boutou, V., Chang, R.K., Ozden, I., Davitt, K., and Nurmikko, A.V., 2003c, Application of light-emitting diodes for aerosol fluorescence detection, Opt Lett, 28(18): 1707–1709.

    Article  ADS  Google Scholar 

  • Pan, Y.L., Boutou, V.E., Bottiger, J.R., Zhang, S.S., Wolf, J.P., and Chang, R.K., 2004, A puff of air sorts bio-aerosols for pathogen identification, Aerosol Sci Tech, 38(6): 598–602.

    Article  Google Scholar 

  • Pan, Y.L., Holler, S., Chang, R.K., Hill, S.C., Pinnick, R.G., Niles, S., and Bottiger, J.R., 1999, Single-shot fluorescence spectra of individual micrometer-sized bio-aerosols illuminated by a 351- or a 266-nm ultraviolet laser, Opt Lett, 24(2): 116–118.

    Article  ADS  Google Scholar 

  • Pan, Y.L., Pinnick, R.G., Hill, S.C., Niles, S., Holler, S., Bottiger, J.R., Wolf, I.P., and Chang, R.K., 2001a, Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles, Appl Phys B-Lasers O, 72(4): 449–454.

    ADS  Google Scholar 

  • Pan, Y.L., Cobler, P., Rhodes, S., Potter, A., Chou, T., Holler, S., Chang, R.K., Pinnick, R.G., and Wolf, J.P., 2001b, High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector, Rev Sci Instrum, 72(3): 1831–1836.

    Article  ADS  Google Scholar 

  • Pinnick, R.G., Hill, S.C., Pan, Y.L., and Chang, R.K., 2004, Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon, Atmos Environ, 38(11): 1657–1672.

    Article  Google Scholar 

  • Pinnick, R.G., Hill, S.C., Nachman, P., Videen, G., Chen, G., and Chang, R.K., 1998, Aerosol fluorescence spectrum analyzer for rapid measurement of single micrometer-sized airborne biological particles, Aerosol Sci Tech, 28(2): 95–104.

    Article  Google Scholar 

  • Pinnick, R.G., Hill, S.C., Nachman, P., Pendleton, J.D., Fernandez, G.L., Mayo, M.W., and Bruno, J.G., 1995, Fluorescence Particle Counter for Detecting Airborne Bacteria and Other Biological Particles, Aerosol Sci Tech, 23(4): 653–664.

    Article  Google Scholar 

  • Pourahmadi, F., Taylor, M., Kovacs, G., Lloyd, K., Sakai, S., Schafer, T., Helton, B., Western, L., Zaner, S., Ching, J., McMillan, B., Belgrader, P., and Northrup, M.A., 2000, Toward a rapid, integrated, and fully automated DNA diagnostic assay for Chlamydia trachomatis and Neisseria gonorrhoeae, Clin Chem, 46(9): 1511–1513.

    Google Scholar 

  • Reyes, F.L., Jeys, T.H., Newbury, N.R., Primmerman, C.A., Rowe, G.S., and Sanchez, A., 1999, Bio-aerosol fluorescence sensor, Field Anal Chem Tech, 3(4–5): 240–248.

    Article  Google Scholar 

  • Rider, T.H., Petrovick, M.S., Nargi, F.E., Harper, J.D., Schwoebel, E.D., Mathews, R.H., Blanchard, D.J., Bortolin, L.T., Young, A.M., Chen, J.Z., and Hollis, M.A., 2003, A B cell-based sensor for rapid identification of pathogens, Science, 301(5630): 213–215.

    Article  ADS  Google Scholar 

  • Russell, S.C., Czerwieniec, G., Lebrilla, C., Steele, P., Riot, V., Coffee, K., Frank, M., and Gard, E.E., 2005, Achieving high detection sensitivity (14 zmol) of biomolecular ions in bio-aerosol mass spectrometry, Analytical Chemistry, 77(15): 4734–4741.

    Article  Google Scholar 

  • Schroder, K.L., HargisJr, P.J., Schmitt, R.L., Rader, D.J., and Shokair, I.R., 1999, Development of an unattended ground sensor for ultraviolet laser induced fluorescence detection of biological agent aerosols, Conference on Air Monitoring and Detection of Chemical and Biological Agents II, SPIE, 3855: 82–91.

    Article  ADS  Google Scholar 

  • Seaver, M., Eversole, J.D., Hardgrove, J.J., Cary, W.K., and Roselle, D.C., 1999, Size and fluorescence measurements for field detection of biological aerosols, Aerosol Sci Tech, 30(2): 174–185.

    Article  Google Scholar 

  • Sengupta, A., Laucks, M.L., Dildine, N., Drapala, E., and Davis, E.J., 2005, Bio-aerosol characterization by surface-enhanced Raman spectroscopy (SERS), J Aerosol Sci, 36(5–6): 651–664.

    Article  Google Scholar 

  • Sivaprakasam, V., Huston, A.L., Scotto, C., and Eversole, J.D., 2004, Multiple UV wavelength excitation and fluorescence of bio-aerosols, Optics Express, 12(19): 4457–4466.

    Article  ADS  Google Scholar 

  • Steiner, W.E., Klopsch, S.J., English, W.A., Clowers, B.H., and Hill, H.H., 2005, Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry, Analytical Chemistry, 77(15): 4792–4799.

    Article  Google Scholar 

  • Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., and Nealson, K.H., 2001, Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging, Rev Sci Instrum, 72(12): 4452–4459.

    Article  ADS  Google Scholar 

  • Teale, F.W.J., and Weber, G., 1957, Ultraviolet Fluorescence of the Aromatic Amino Acids, Biochem J, 65(3): 476–482.

    Google Scholar 

  • Tjarnhage, T., Stromqvist, M., Olofsson, G., Squirrell, D., Burke, J., Ho, J., and Spence, M., 2001, Multivariate data analysis of fluorescence signals from biological aerosols, Field Anal Chem Tech, 5(4): 171–176.

    Article  Google Scholar 

  • Weichert, R., Klemm, W., Legenhausen, K., and Pawellek, C., 2002, Determination of fluorescence cross-sections of biological aerosols, Particle & Particle Systems Characterization, 19(3): 216–222.

    Article  Google Scholar 

  • Wu, Q., Hamilton, T., Nelson, W.H., Elliott, S., Sperry, J.F., and Wu, M., 2001, UV Raman spectral intensities of E. coli and other bacteria excited at 228.9, 244.0, and 248.2 nm, Analytical Chemistry, 73(14): 3432–3440.

    Article  Google Scholar 

  • Wyatt, P.J., Schehrer, K.L., Phillips, S.D., Jackson, C., Chang, Y.J., Parker, R.G., Phillips, D.T., and Bottiger, J.R., 1988, Aerosol-Particle Analyzer, Appl Optics, 27(2): 217–221.

    Article  ADS  Google Scholar 

  • Ye, Z.M., and Auner, G., 2004, Principal Component Analysis Approach for Biomedical Sample Identification, 2004 IEEE International Conference on Systems, Man and Cybernetics: 1384–1354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Pan, YL. et al. (2007). BIO-AEROSOL FLUORESCENCE. In: Hoekstra, A., Maltsev, V., Videen, G. (eds) Optics of Biological Particles. NATO Science Series, vol 238. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5502-7_4

Download citation

Publish with us

Policies and ethics