Skip to main content

Many Paths up the Mountain: Tracking the Evolution of Cellulose Biosynthesis

  • Chapter
Cellulose: Molecular and Structural Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloni Y., Delmer D.P., and Benziman M. 1982. Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci USA 79(21):6448–6452.

    Article  CAS  Google Scholar 

  • Amikam D. and Benziman M. 1989. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 171(12):6649–6655.

    CAS  Google Scholar 

  • Amikam D. and Galperin M.Y. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6.

    Article  CAS  Google Scholar 

  • Archibald J.M., Rogers M.B., Toop M., Ishida K., and Keeling P. 2003. Lateral gene transfer and the evolution of plastid targeted proteins in the secondary plastid-containing alga Bigelowiella natans. PNAS 100(13):7678–7683.

    Article  CAS  Google Scholar 

  • Ausmees N., Mayer R., Weinhouse H., Volman G., Amikam D., Benziman M., and Lindberg M. 2001. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204:163–167.

    Article  CAS  Google Scholar 

  • Benziman M., Haigler C.H., Brown, Jr. R.M., White A.R., and Cooper K.M. 1980. Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. PNAS USA 77:6678–6682.

    Article  CAS  Google Scholar 

  • Blanton R.L., Fuller D., Iranfar N., Grimson M.J., and Loomis W.F. 2000. The cellulose synthase gene of Dictyostelium. Proc Natl Acad Sci USA 97:2391–2396.

    Article  CAS  Google Scholar 

  • Brahamsha B. and Haselkorn R. 1992. Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes. J Bacteriol 173(8):2442–50.

    Google Scholar 

  • Brett C.T. 2000. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–99.

    Article  CAS  Google Scholar 

  • Brown, Jr. R.M. 1985. Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl 2:13–32.

    Google Scholar 

  • Brown, Jr. R.M., Franke W.W., Kleinig H., Falk H., and Sitte P. 1969. A cellulosic wall component produced by the golgi apparatus. Science 166:894–896.

    Article  CAS  Google Scholar 

  • Brown, Jr. R.M. 1996. The biosynthesis of cellulose. Pure Appl Chem 10:1345–1373.

    Google Scholar 

  • Brown, Jr. R.M. and Montezinos D. 1976. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73:143–147.

    Article  CAS  Google Scholar 

  • Brown, Jr. R.M., Willison J.H.M., and Richardson C.L. 1976. Cellulose biosynthesis in Acetobacter xylinum: 1. Visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73(12):4565–4569.

    Article  CAS  Google Scholar 

  • Dehal P., Satou Y., Campbell R.K., Chapman J., Degnan B., De Tomaso A., Davidson B., Di Gregorio A., Gelpke M., Goodstein D.M., Harafuji N., Hastings K.E., Ho I., Hotta K., Huang W., Kawashima T., Lemaire P., Martinez D., Meinertzhagen I.A., Necula S., Nonaka M., Putnam N., Rash S., Saiga H., Satake M., Terry A., Yamada L., Wang H.G., Awazu S., Azumi K., Boore J., Branno M., Chin-Bow S., DeSantis R., Doyle S., Francino P., Keys D.N., Haga S., Hayashi H., Hino K., Imai K.S., Inaba K., Kano S., Kobayashi K., Kobayashi M., Lee B.I., Makabe K.W., Manohar C., Matassi G., Medina M., Mochizuki Y., Mount S., Morishita T., Miura S., Nakayama A., Nishizaka S., Nomoto H., Ohta F., Oishi K., Rigoutsos I., Sano M., Sasaki A., Sasakura Y., Shoguchi E., Shin-i T., Spagnuolo A., Stainier D., Suzuki M.M., Tassy O., Takatori N., Tokuoka M., Yagi K., Yoshizaki F., Wada S., Zhang C., Hyatt P.D., Larimer F., Detter C., Doggett N., Glavina T., Hawkins T., Richardson P., Lucas S., Kohara Y., Levine M., Satoh N., and Rokhsar D.S. 2003. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167.

    Article  Google Scholar 

  • Deinema M.H. and Zevenhuizen L.P. 1971. Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78(1):42–51.

    Article  CAS  Google Scholar 

  • Delmer D.P. 1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Phys Plant Mol Biol 50:245–276.

    Article  CAS  Google Scholar 

  • Doolittle W. 1998. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311.

    Article  CAS  Google Scholar 

  • García B., Latasa C., Solano C., García-del Portillo F., Gamazo C., and Lasa I. 2004. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54(1):264–277.

    Article  Google Scholar 

  • Giddings J.R. TH, Brower D.L., and Staehelin L.A. 1980. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84 (2):327–339.

    Article  Google Scholar 

  • González V., Bustos P., Ramirez-Romero M.A., Medrano-Soto A., Salgado H., Hernandez-Gonzalez I., Hernandez-Celis J.C., Quintero V., Moreno-Hagelsieb G., Girard L., Rodriguez O., Flores M., Cevallos M.A., Collado-Vides J., Romero D., and Davila G. 2003. The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4(6):R36.

    Article  Google Scholar 

  • Grimson M.J., Haigler C.H., and Blanton RL. 1996. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J Cell Sci 109 (Pt 13):3079–3087.

    CAS  Google Scholar 

  • Guerrero G., Peralta H., Aguilar A., Diaz R., Villalobos M.A., Medrano-Soto A. and Mora J. 2005. Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 5:55.

    Article  Google Scholar 

  • Hotchkiss A.T. and Brown, Jr. R.M., 1988. Evolution of the cellulosic cell wall in the Charophyceae. In: Schuerch C. (ed.) Cellulose and Wood – Chemistry and Technology.. Wiley, New York, pp. 591–609.

    Google Scholar 

  • Huang C.Y., Ayliffe M.A., and Timmis J.N. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76.

    Article  CAS  Google Scholar 

  • Kimura S., Chen H.P., Saxena I.M., Brown, Jr. R.M., and Itoh T. 2001a. Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J Bacteriol 183(19):5668–74.

    Article  CAS  Google Scholar 

  • Kimura S., Ohshima C., Hirose E., Nishikawa J., and Itoh T. 2001b. Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma 216(1–2):71–74.

    Article  CAS  Google Scholar 

  • Korbel J.O., Jensen L.J., von Mering C., and Bork P. 2004. Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 22(7):911–917.

    Article  CAS  Google Scholar 

  • Linder M., Winiecka-Krusnell J., and Linder E. 2002. Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in protozoa. Appl Environ Microbiol.

    Google Scholar 

  • Marchler-Bauer A., Anderson J.B., Cherukuri P.F., DeWeese-Scott C., Geer L.Y., Gwadz M., He S., Hurwitz D.I., Jackson J.D., Ke Z., Lanczycki C.J., Liebert C.A., Liu C., Lu F., Marchler G.H., Mullokandov M., Shoemaker B.A., Simonyan V., Song J.S., Thiessen P.A., Yamashita R.A., Yin J.J., Zhang D., and Bryant S.H. 2005. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196.

    Article  CAS  Google Scholar 

  • Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., and Penny D. 2002. Evolutionary anaylsis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. PNAS 99(19):12246–12251.

    Article  CAS  Google Scholar 

  • Matthysse A.G., Deschet K., Williams M., Marry M., White A.R., and Smith W.C. 2004. A functional cellulose synthase from ascidian epidermis. Proc Natl Acad Sci USA 101(4):986–991.

    Article  CAS  Google Scholar 

  • Matthysse A.G., Marry M., Krall L., Kaye M., Ramey B.E., Fuqua C., and White A.R. 2005. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant Microbe Interact 18(9):1002–1010.

    Article  CAS  Google Scholar 

  • Matthysse A.G., Thomas D.L., and White A.R. 1995a. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1076–1081.

    CAS  Google Scholar 

  • Matthysse A.G., White S., and Lightfoot R. 1995b. Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1069–1075.

    CAS  Google Scholar 

  • Mayer R., Ross P., Weinhouse H., Amikam D., Volman G., Ohana P., Calhoon R.D., Wong H.C., Emerick A.W., and Benziman M. 1991. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc Natl Acad Sci USA 88(12):5472–5476.

    Article  CAS  Google Scholar 

  • Mueller S.C. and Brown, Jr. R.M. 1980. Evidence for an intramembrane componentassociated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84:315–326.

    Article  CAS  Google Scholar 

  • Mühlethaler K. 1949. The structure of bacterial cellulose. Biochim Biophys Acta 3:527–535.

    Article  Google Scholar 

  • Nakashima K., Yamanda L., Satou Y., Azuma J., and Satoh N. 2004. The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214(2):81–88.

    Article  CAS  Google Scholar 

  • Napoli C., Dazzo F., and Hubbell D. 1975. Production of cellulose microfibrils by Rhizobium. Appl Microbiol 30(1):123–31.

    CAS  Google Scholar 

  • Nobles D.R., Jr. and Brown, Jr. R.M., Jr. 2004. The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose 11:437–448.

    Article  CAS  Google Scholar 

  • Nobles D.R., Romanovicz D.K., and Brown, Jr. R.M., Jr. 2001. Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127(2):529–542.

    Article  CAS  Google Scholar 

  • Okuda K.O., Sekida S., Yoshinaga S. and Suetomo Y. 2004. Cellulose synthesizing complexes in some chromophyte algae. Cellulose 11:365–376.

    Article  CAS  Google Scholar 

  • Olsen G.J., Woese C.R., and Overbeek R. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6.

    CAS  Google Scholar 

  • Preston R.D. 1974. Cellulose. In: The Physical Biology of Plant Cell Walls. Chapman & Hall, London, pp. 444–456.

    Google Scholar 

  • Richmond T. 2000. Higher plant cellulose synthases. Genome Biology 1(4): reviews 3001.1–3001.6.

    Article  Google Scholar 

  • Roberts A.W. and Roberts E.M. 2004. Cellulose synthase (CesA) genes in algae and seedless plants. Cellulose 11:419–435.

    Article  CAS  Google Scholar 

  • Roberts E. 1991. Biosynthesis of cellulose II and related carbohydrates. PhD thesis. The Univeristy of Texas at Austin, Austin.

    Google Scholar 

  • Roelofsen P.A. 1958. Cell wall structure as related to surface growth. Acta Botanica Neerlandica 7:77–89.

    Google Scholar 

  • Römling U. (2002). Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212.

    Article  Google Scholar 

  • Ross P., Aloni Y., Weinhouse H., Michaeli D., Weinberger-Ohana P., Mayer R., and Benziman M. 1986. Control of cellulose synthesis in Acetobacter xylinum: a unique guanyl ologonucleotide is the immediate activator of the cellulose synthase. Carbohydrate Res 149:101–117.

    Article  CAS  Google Scholar 

  • Ross P., Mayer R., and Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58.

    CAS  Google Scholar 

  • Saxena I.M. and Brown, Jr. R.M., 2005. Cellulose biosynthesis: current views and evolving concepts. Ann Bot (Lond) 96(1):9–21.

    Article  CAS  Google Scholar 

  • Saxena I.M., Brown, Jr. R.M., and Dandekar T. 2001. Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57:1135–1148.

    Article  CAS  Google Scholar 

  • Saxena I.M., Brown, Jr. R.M., Fevre M., Geremia R., and Henrissat B. 1995. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–24.

    CAS  Google Scholar 

  • Saxena I.M., Kudlicka K., Okuda K., and Brown, Jr. R.M. 1994. Characterization of genes in the cellulose synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752.

    CAS  Google Scholar 

  • Schüßler A., Hirn S. and Katsaros C. 2003. Cellulose synthesizing terminal complexes and morphogenesis in tip-growing of Syringoderma phinneyi (Phaeophyceae). Phycol Res 51:35–44.

    Article  Google Scholar 

  • Silver R.P., Prior K., Nsahlai C., and Wright L.F. 2001. ABC transporters and the export of capsular polysaccharides from gram-negative bacteria. Res Microbiol 152(3–4):357–364.

    Article  CAS  Google Scholar 

  • Spiers J., Kahn G., Bohannon J., Travisano M. and Rainey P.B. 2002. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161:33–46.

    CAS  Google Scholar 

  • Stragier P. and Losick R. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:297–341.

    Article  CAS  Google Scholar 

  • Streit W.R., Schmitz R.A., Perret X., Staehelin C., Deakin W.J., Raasch C., Liesegang H., and Broughton W.J. 2004. An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234. J Bacteriol 186(2):535–542.

    Article  CAS  Google Scholar 

  • Tsekos I. 1999. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:625–655.

    Article  Google Scholar 

  • Yamada M. and Miyazaki T. 1976. Ultrastructure and chemical analysis of the cell wall of Pythium debaryanum. Jpn J Microbiol 20(2):83–91.

    CAS  Google Scholar 

  • Yu Z.G., Zhou L.Q., Anh V.V., Chu K.H., Long S.C., and Deng J.Q. 2005. Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from complete genomes without sequence alignment. J Mol Evol 60(4):538–545.

    Article  CAS  Google Scholar 

  • Yudkin M.D. and Clarkson J. 2005. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis. Mol Microbiol 56(3):578–589.

    Article  CAS  Google Scholar 

  • Zaar K. 1979. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum.J Cell Biol 80(3):773–777.

    Article  CAS  Google Scholar 

  • Zogaj X., Bokranz W., Nimtz M., and Romling U. 2003. Production of cellulose and curli fimbrieae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71(7):4151–4158.

    Article  CAS  Google Scholar 

  • Zogaj X., Nimtz M., Rohde M., Bokranz W., and Romling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Nobles, D.R., Brown, R.M. (2007). Many Paths up the Mountain: Tracking the Evolution of Cellulose Biosynthesis. In: Brown, R.M., Saxena, I.M. (eds) Cellulose: Molecular and Structural Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1_1

Download citation

Publish with us

Policies and ethics