Skip to main content

The Role of Analogies in Learning

  • Chapter
  • First Online:
The Pedagogy of Physical Science

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 38))

Abstract

In this chapter, we first present an empirical account that documents teachers’ learning about simple electric circuits through the use of analogies. In reviewing the analysis of data generated, we go on to propose that the research enterprise should shift focus from determining the effectiveness of analogy in cognitive transfer towards recognising the role of analogy in generating engagement in the learning process. Finally, we present an account of how the language used in analogical reasoning offers us both possibility and constraint in shaping the way we conceptualise the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Black, P. J., & Harlen, W. (1993). How can we specify concepts for primary science ? In P. J. Black & A. M. Lucas (Eds.), Children’s informal ideas in science (pp. 208-229). London: Routledge.

    Google Scholar 

  • Browne, D. E. (1994a). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201-214.

    Article  Google Scholar 

  • Brown, T. (1997). Mathematics education and language. Interpreting hermeneutics and post structuralism. Dordrecht: Kluwer.

    Google Scholar 

  • Brown, T. (2001). Mathematics education and language. Dordrecht: Kluwer.

    Google Scholar 

  • Browne, D. E. (1994b). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201-214.

    Article  Google Scholar 

  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.

    Article  Google Scholar 

  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053.

    Article  Google Scholar 

  • Cosgrove, M. (1995). A study in science-in-the-making as students generate an analogy for electricity. International Journal of Science Education, 17(3), 295-310.

    Article  Google Scholar 

  • Dreistadt, R. (1968). An analysis of the use of analogies and metaphors in science. Journal of Psychology, 68, 97-116.

    Google Scholar 

  • Driver, R. (1994). Children’s ideas about physical processes. Electricity. In R. Driver, A. Squires, P. Rushworth, & V. Wood-Robinson (Eds.), Making sense of secondary science (pp. 117-125). London: Routledge.

    Google Scholar 

  • Duit, R. (2008). Bibliography STCSE: Students’ and teachers’ conceptions and science education. Kiel, Germany: IPN-Leibniz Institute for Science Education. Retrieved June 2008, from www.ipn.uni-kiel.de/aktuell/ stcse/stcse.html.

  • Easley, J. (1990). Stressing dialogic skill. In E. Duckworth, J. Easley & D. Hawkins (Eds.), Science Education: A minds-on-approach for the elementary years (pp. 61-93). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Eger, M. (1992a). Hermeneutics and science education: An introduction. Science and Education, 1, 337-348.

    Article  Google Scholar 

  • Eger, M. (1992b). Hermeneutics as an approach to science: Part 1. Science and Education, 2, 1-29.

    Google Scholar 

  • Eger, M. (1993). Hermeneutics as an approach to science: Part 2. Science and Education, 2(4), 303-328.

    Article  Google Scholar 

  • Fensham, P. J. (2001). Science content as problematic - issues for research. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross, et al. (Eds.), Research in science education - past, present and future. Dordrecht: Kluwer.

    Google Scholar 

  • Feynman, R. P. (1992). The character of physical law. London: Penguin.

    Google Scholar 

  • Frederiksen, J. R., White, B. Y., & Guttwill, J. (1999). Dynamic mental models in learning science: the importance of constructing the derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806-836.

    Article  Google Scholar 

  • Gallagher, S. (1992a). Hermeneutics and education. Albany, NY: State University of New York Press.

    Google Scholar 

  • Gallagher, S. (1992b). Language and the imperfect consensus. In T. W. Busch & S. Gallagher (Eds.), Merleau-Pony, hermeneutics and postmodernism (pp. 69-79). Albany, NY: State University of New York Press.

    Google Scholar 

  • Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: mental models of electricity. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 99-131). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gooding, D. (1989). Magnetic curves’ and the magnetic field. In D. Gooding, T. Pinch, & S. Schaffer, S. (Eds.), The uses of experiment. Studies in the natural sciences (pp. 183-224).Cambridge: Cambridge University Press.

    Google Scholar 

  • Gregory, B. (1988). Inventing reality. Physics as language. New York: Wiley.

    Google Scholar 

  • Heywood, D. (1999). Interpretation and meaning in science education: Hermeneutic perspectives on language in learning and teaching science. Ph.D. thesis, Manchester Metropolitan University, Manchester.

    Google Scholar 

  • Heywood, D. (2002). The place of analogies in science education’. Cambridge Journal of Education, 32(2), 233-248.

    Article  Google Scholar 

  • Heywood, D., & Parker, J. (1997). Confronting the analogy: Primary teachers exploring the usefulness of analogies in the teaching and learning of electricity. International Journal of Science Education, 19, 869-885.

    Article  Google Scholar 

  • Heywood, D., & Parker, J. (2001). Describing the cognitive landscape in learning and teaching about forces. International Journal of Science Education, 23(11), 1177-1199.

    Article  Google Scholar 

  • Johnson, P. (1998). Children's understanding of changes of state involving the gas state, part 2: Evaporation and condensation below boiling point. International Journal of Science Education, 6, 695-709.

    Article  Google Scholar 

  • Kelly, G. J., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849-871.

    Article  Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Lee, Y., & Taw, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. International Journal of Science Education, 23(2), 111-149.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 371-388). Cambridge: Cambridge University Press.

    Google Scholar 

  • Osborne, R., & Freyberg, P. (eds). (1985). Learning in science: The implications of ‘children’s science’. London: Heinemann.

    Google Scholar 

  • Osborne, J., Black, P., Smith, M., & Meadows, J. (1991). Science processes and concept exploration project. Research report. Electricity. Liverpool: Liverpool University Press.

    Google Scholar 

  • Parker, J., & Heywood, D. (2000). Exploring the relationship between subject knowledge and pedagogic content knowledge in primary teachers’ learning about force. International Journal of Science Education, 22, 89-111.

    Article  Google Scholar 

  • Popper, K. R. (1963). Conjectures and refutations. London: Routledge.

    Google Scholar 

  • Reiner, M., & Gilbert, J. (2000). Epistemological resources for thought experimentation in science learning. International Journal of Science Education, 22(5), 489-506.

    Article  Google Scholar 

  • Scott, P., Asoko, H., & Leach, J. (2007). Student conceptions and conceptual learning in science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 31-56). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sfard, A. (1998). On two metaphors of learning and the dangers of choosing just one. Educational Researcher, 27(2), 4-13.

    Google Scholar 

  • Shipstone, M. (1984). A study of children’s understanding of electricity in simple D.C. circuits. European Journal of Science Education, 6, 185-195.

    Google Scholar 

  • Summers, M., Kruger, C., & Mant, J. (1998). Teaching electricity effectively in the primary school: a case study. International Journal of Science Education, 20(2), 153-172.

    Article  Google Scholar 

  • Tasker, R., & Osborne, R. (1985). Science teaching and science learning. In R. Osborne & P. Freyberg (Eds.), Learning in science, the implications of children's science. Auckland, NZ: Heinemann.

    Google Scholar 

  • Tiberghein, A. (1985). Some features of children’s ideas and their implications for teaching. In R. Driver, E. Guesne, & A. Tiberghein (Eds.), Children’s ideas in science (pp. 1-9, 193-201). Buckingham: Open University Press.

    Google Scholar 

  • Training and Development Agency for schools (TDA) (2007). The revised standards for the recommendation for qualified teacher status (QTS). Retrieved Feb. 2007, from http://www.tda.gov.uk/upload/resources/doc/draft_qts_standards.

  • Treagust, D. F. (2007). General instructional methods and strategies. In S. K. Abell & L. G. Lederman (Eds.), Handbook of research on science education (pp. 373-392). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Vosnaidou, S. (2001). Conceptual change research and the teaching of science. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross & P. Reiske (Eds.), Research in science education - past, present, and future (pp. 177-188). Dordrecht: Kluwer.

    Google Scholar 

  • Wilbers, J., & Duit, R. (2001). On the micro-structure of analogical reasoning: The case of understanding chaotic systems. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross, et al. (Eds.), Research in science education - past, present, and future (pp. 205-210). Dordrecht: Kluwer.

    Google Scholar 

  • Wolpert, L. W. (1992). The unnatural nature of science. London: Faber & Faber.

    Google Scholar 

  • Wong, D. E. (1993). Understanding the generative capacity as analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259-72.

    Article  Google Scholar 

  • Brown, T. (1997). Mathematics education and language. Interpreting hermeneutics and post structuralism. Dordrecht: Kluwer.

    Google Scholar 

  • Brown, T. (2001). Mathematics education and language. Dordrecht: Kluwer.

    Google Scholar 

  • Browne, D. E. (1994). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201-214.

    Article  Google Scholar 

  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.

    Article  Google Scholar 

  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053.

    Article  Google Scholar 

  • Cosgrove, M. (1995). A study in science-in-the-making as students generate an analogy for electricity. International Journal of Science Education, 17(3), 295-310.

    Article  Google Scholar 

  • Dreistadt, R. (1968). An analysis of the use of analogies and metaphors in science. Journal of Psychology, 68, 97-116.

    Google Scholar 

  • Driver, R. (1994). Children’s ideas about physical processes. Electricity. In R. Driver, A. Squires, P. Rushworth, & V. Wood-Robinson (Eds.), Making sense of secondary science (pp. 117-125). London: Routledge.

    Google Scholar 

  • Duit, R. (2008). Bibliography STCSE: Students’ and teachers’ conceptions and science education. Kiel, Germany: IPN-Leibniz Institute for Science Education. Retrieved June 2008, from www.ipn.uni-kiel.de/aktuell/stcse/stcse.html.

  • Easley, J. (1990). Stressing dialogic skill. In E. Duckworth, J. Easley & D. Hawkins (Eds.), Science Education: A minds-on-approach for the elementary years (pp. 61-93). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Eger, M. (1992a). Hermeneutics and science education: An introduction. Science and Education, 1, 337-348.

    Article  Google Scholar 

  • Eger, M. (1992b). Hermeneutics as an approach to science: Part 1. Science and Education, 2, 1-29.

    Google Scholar 

  • Fensham, P. J. (2001). Science content as problematic - issues for research. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross, et al. (Eds.), Research in science education - past, present and future (pp. 27-41). Dordrecht: Kluwer.

    Google Scholar 

  • Feynman, R. P. (1992). The character of physical law. London: Penguin.

    Google Scholar 

  • Frederiksen, J. R., White, B. Y., & Guttwill, J. (1999). Dynamic mental models in learning science: the importance of constructing the derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806-836.

    Article  Google Scholar 

  • Gallagher, S. (1992a). Hermeneutics and education. Albany, NY: State University of New York Press.

    Google Scholar 

  • Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: mental models of electricity. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 99-131). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gooding, D. (1989). Magnetic curves’ and the magnetic field. In D. Gooding, T. Pinch, & S. Schaffer, S. (Eds.), The uses of experiment. Studies in the natural sciences (pp. 183-224).Cambridge: Cambridge University Press.

    Google Scholar 

  • Gregory, B. (1988). Inventing reality. Physics as language. New York: Wiley.

    Google Scholar 

  • Heywood, D. (1999). Interpretation and meaning in science education: Hermeneutic perspectives on language in learning and teaching science. Ph.D. thesis, Manchester Metropolitan University, Manchester.

    Google Scholar 

  • Heywood, D. (2002). The place of analogies in science education. Cambridge Journal of Education, 32(2), 233-248.

    Article  Google Scholar 

  • Heywood, D., & Parker, J. (1997). Confronting the analogy: Primary teachers exploring the usefulness of analogies in the teaching and learning of electricity. International Journal of Science Education, 19, 869-885.

    Article  Google Scholar 

  • Heywood, D., & Parker, J. (2001). Describing the cognitive landscape in learning and teaching about forces. International Journal of Science Education, 23(11), 1177-1199.

    Article  Google Scholar 

  • Johnson, P. (1998). Children’s understanding of changes of state involving the gas state, part 2: Evaporation and condensation below boiling point. International Journal of Science Education, 6, 695-709.

    Article  Google Scholar 

  • Kelly, G. J., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849-871.

    Article  Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Lee, Y., & Taw, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. International Journal of Science Education, 23(2), 111-149.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 371-388). Cambridge: Cambridge University Press.

    Google Scholar 

  • Osborne, J., Black, P., Smith, M., & Meadows, J. (1991). Science processes and concept exploration project. Research report. Electricity. Liverpool: Liverpool University Press.

    Google Scholar 

  • Osborne, R., & Freyberg, P. (Eds.). (1985). Learning in science: The implications of ‘children’s science’. London: Heinemann.

    Google Scholar 

  • Parker, J., & Heywood, D. (2000). Exploring the relationship between subject knowledge and pedagogic content knowledge in primary teachers’ learning about force. International Journal of Science Education, 22, 89-111.

    Article  Google Scholar 

  • Popper, K. R. (1963). Conjectures and refutations. London: Routledge.

    Google Scholar 

  • Reiner, M., & Gilbert, J. (2000). Epistemological resources for thought experimentation in science learning. International Journal of Science Education, 22(5), 489-506.

    Article  Google Scholar 

  • Scott, P., Asoko, H., & Leach, J. (2007). Student conceptions and conceptual learning in science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 31-56). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sfard, A. (1998). On two metaphors of learning and the dangers of choosing just one. Educational Researcher, 27(2), 4-13.

    Google Scholar 

  • Shipstone, M. (1984). A study of children’s understanding of electricity in simple D.C. circuits. European Journal of Science Education, 6, 185-195.

    Google Scholar 

  • Summers, M., Kruger, C., & Mant, J. (1998). Teaching electricity effectively in the primary school: a case study. International Journal of Science Education, 20(2), 153-172.

    Article  Google Scholar 

  • Tasker, R., & Osborne, R. (1985). Science teaching and science learning. In R. Osborne & P. Freyberg (Eds.), Learning in science, the implications of children’s science. Auckland, NZ: Heinemann.

    Google Scholar 

  • TDA (2007). Training and Development Agency for schools. The revised standards for the recommendation for qualified teacher status (QTS). Retrieved Feb. 2007, from http://www.tda.gov.uk/upload/resources/doc/draft_qts_standards.

  • Tiberghein, A. (1985). Some features of children’s ideas and their implications for teaching. In R. Driver, E. Guesne, & A. Tiberghein (Eds.), Children’s ideas in science (pp. 1-9, 193-201). Buckingham: Open University Press.

    Google Scholar 

  • Treagust, D. F. (2007). General instructional methods and strategies. In S. K. Abell & L. G. Lederman (Eds.), Handbook of research on science education (pp. 373-392). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Vosnaidou, S. (2001). Conceptual change research and the teaching of science. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross & P. Reiske (Eds.), Research in science education - past, present, and future (pp. 177-188). Dordrecht: Kluwer.

    Google Scholar 

  • Wilbers, J., & Duit, R. (2001). On the micro-structure of analogical reasoning: The case of understanding chaotic systems. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross, et al. (Eds.), Research in science education - past, present, and future (pp. 205-210). Dordrecht: Kluwer.

    Google Scholar 

  • Wolpert, L. W. (1992). The unnatural nature of science. London: Faber & Faber.

    Google Scholar 

  • Wong, D. E. (1993). Understanding the generative capacity as analogies as a tool for explanation. Journal of Research in Science Teaching, 30(10), 1259-72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Heywood .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heywood, D., Parker, J. (2009). The Role of Analogies in Learning. In: The Pedagogy of Physical Science. Contemporary Trends and Issues in Science Education, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5271-2_3

Download citation

Publish with us

Policies and ethics