Skip to main content

Statistical Analysis of Large Wildfires

  • Chapter
The Economics of Forest Disturbances

Part of the book series: Forestry Sciences ((FOSC,volume 79))

Large, infrequent wildfires cause dramatic ecological and economic impacts. Consequently, they deserve special attention and analysis. The economic significance of large fires is indicated by the fact that approximately 94 percent of fire suppression costs on U.S. Forest Service land during the period 1980–2002 resulted from a mere 1.4 percent of the fires (Strategic Issues Panel on Fire Suppression Costs 2004). Further, the synchrony of large wildfires across broad geographic regions has contributed to a budgetary situation in which the cost of fighting wildfires has exceeded the Congressional funds appropriated for suppressing them (based on a ten-year moving average) during most years since 1990. In turn, this shortfall has precipitated a disruption of management and research activities within federal land management agencies, leading to a call for improved methods for estimating fire suppression costs (GAO 2004).

Understanding the linkages between unusual natural events, their causes and economic consequences is of fundamental importance in designing strategies for risk management. Standard statistical methods such as least squares regression are generally inadequate for analyzing rare events because they focus attention on mean values or typical events. Because extreme events can lead to sudden and massive restructuring of natural ecosystems and the value of economic assets, the ability to directly analyze the probability of catastrophic change, as well as factors that influence such change, would provide a valuable tool for risk managers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvorado, E., D. V. Sandberg, and S. G. Pickford. 1998. Modeling large forest fires as extreme events. Northwest Science 72:66-75.

    Google Scholar 

  • Anonymous. 1960. Air tanker capabilities and operational limitations. Fire Control Notes 21(4):129-131.

    Google Scholar 

  • Balling, R. C., G. A. Myer, and S. G. Wells. 1992. Relation of surface climate and burned area in Yellowstone National Park. Agricultural and Forest Meteorology 60:285-293.

    Article  Google Scholar 

  • Brock, W. A. 1999. Scaling in economics: A reader’s guide. Industrial and Corporate Change 8:409-446.

    Article  Google Scholar 

  • Coles, S. 2001. An introduction to statistical modeling of extreme values. Springer-Verlag, London, UK. 208 p.

    Google Scholar 

  • Cumming, S. G. 2001. A parametric model of the fire-size distribution. Canadian Journal of Forest Research 31:1297-1303.

    Article  Google Scholar 

  • Embrechts, P., C. Klüppelberg, and T. Mikosch. 2003. Modelling extremal events for insurance and finance. Springer-Verlag, Berlin. 648 p.

    Google Scholar 

  • Fama, E. F. 1963. Mandelbrot and the stable Paretian hypothesis. The Journal of Business 36(4):420-429.

    Article  Google Scholar 

  • Gabaix, X. 1999. Zipf ’s law for cities: An explanation. Quarterly Journal of Economics CXIV:739-767.

    Google Scholar 

  • Gabaix, X., P. Gopikrishnan, V. Plerou, and H. E. Stanley. 2003. A theory of power-law distributions in financial market fluctuations. Nature 423:267-270.

    Article  CAS  PubMed  Google Scholar 

  • Gaines, S. D., and M. W. Denny. 1993. The largest, smallest, highest, lowest, longest, and shortest: Extremes in ecology. Ecology 74:1677-1692.

    Article  Google Scholar 

  • Government Accountability Office (GAO). 2004. Wildfire suppression: Funding transfers cause project cancellations and delays, strained relationships and management disrup-tions. Available online at www. gao. gov/cgi-bin/getrpt?GAO-04-612. Last accessed April 20, 2007.

  • Katz, R. W., G. S. Brush, and M. B. Parlange. 2005. Statistics of extremes: Modeling ecological disturbances. Ecology 86:1124-1134.

    Article  Google Scholar 

  • Krugman, P. 1996. The self-organizing economy. Blackwell, Cambridge, MA. 122 p.

    Google Scholar 

  • Malamud, B. D., and D. L. Turcotte. 1999. Self-organized criticality applied to natural hazards. Natural Hazards 20:93-116.

    Article  Google Scholar 

  • Malamud, B. D., J. D. A. Millington, and G. L. W. Perry. 2005. Characterizing wild- fire regimes in the United States. Proceedings of the National Academy of Science 102(13):4694-4699.

    Article  CAS  Google Scholar 

  • Malamud, B. D., G. Morein, and D. L. Turcotte. 1998. Forest fires: An example of selforganized critical behavior. Science 281:1840-1842.

    Article  CAS  PubMed  Google Scholar 

  • Mandelbrot, B. 1960. The Paveto-Lévy law and the distribution of income. International Economic Review 1(2):79-109.

    Article  Google Scholar 

  • Mandelbrot, B. 1963a. The variation of certain speculative prices. The Journal of Business 36(4):394-419.

    Article  Google Scholar 

  • Mandelbrot, B. 1963b. New methods in statistical economics. The Journal of Political Economy 71:421-440.

    Article  Google Scholar 

  • Mandelbrot, B. B. 1997. States of randomness from mild to wild, and concentration from the short to the long run. In: Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, B. B. Mandelbrot, R. E. Gomory, P. H. Cootner, and E. F. Fama (eds. ). Springer, New York, NY. 551 p.

    Google Scholar 

  • Mangan, R. J. 2001. Issues in reducing costs on large wildfires. Fire Management Today 61(3):6-10.

    Google Scholar 

  • McKelvey, K. S., and K. S. Busse. 1996. Twentieth-century fire patterns on Forest Service lands. Chapter 41, Sierra Nevada Ecosystem Project: Final Report to Congress, vol. II, Assessments and scientific basis for management options. Davis: University of California.

    Google Scholar 

  • Miller, Jr., R. G. 1981. Survival analysis. John Wiley & Sons, New York, NY. 238 p.

    Google Scholar 

  • Mitchner, L. J., and A. J. Parker. 2005. Climate, lightning, and wildfire in the national forests of the southeastern United States: 1989-1998. Physical Geography 26:147-162.

    Article  Google Scholar 

  • Moritz, M. A. 1997. Analyzing extreme disturbance events: Fire in Los Padres National Forest. Ecological Applications 7:1252-1262.

    Article  Google Scholar 

  • Noever, D. A. 1993. Himalayan sandpiles. Physical Review E 47(1):724-725.

    Article  Google Scholar 

  • Reiss, R. -D., and M. Thomas. 2001. Statistical analysis of extreme values. Birkhäuser Verlag, Berlin. 443 p.

    Google Scholar 

  • Ricotta, C., G. Avena, and M. Marchetti. 1999. The flaming sandpile: Self-organized cricality and wildfires. Ecological Modelling 119:73-77.

    Article  Google Scholar 

  • Romme, W. H., and D. G. Despain. 1989. Historical perspective on the Yellowstone fires of 1988. Bioscience 39:695-699.

    Article  Google Scholar 

  • Schoenberg, F. P., R. Peng, and J. Woods. 2003. On the distribution of wildfire sizes. Environmetrics 14:583-592.

    Article  Google Scholar 

  • Sigmon, K. 1999. A primer on heavy-tailed distributions. Queueing Systems 33:261-275.

    Article  Google Scholar 

  • Simon, H. 1955. On a class of skew distribution functions. Biometrika 42:425-440.

    Google Scholar 

  • Skinner, C. N., and C. -R. Chang. 1996. Fire regimes, past and present. Sierra Nevada Ecosystem Project: Final Report to Congress, vol. II, Chapter 38. Davis: University of California.

    Google Scholar 

  • Smith, R. L. 2003. Statistics of extremes with applications in environment, insurance and finance. In: Extreme Values in Finance, Telecommunications and the Environment, B. Finkenstädt and H. Rootzén (eds. ). Chapman & Hall/CRC Press, Boca Raton, FL. 405 p.

    Google Scholar 

  • Song, W., F. Weicheng, W. Binghong, and Z. Jianjun. 2001. Self-organized criticality of forest fire in China. Ecological Modelling 145:61-68.

    Article  Google Scholar 

  • Strategic Issues Panel on Fire Suppression Costs. 2004. Large fire suppression costs—Strategies for cost management. Available online at http://www. fireplan. gov/ resources/2004. html. Last accessed April 20, 2007.

  • Strauss, D., L. Bednar, and R. Mees. 1989. Do one percent of the forest fires cause ninetynine percent of the damage? Forest Science 35:319-328.

    Google Scholar 

  • Swetnam, T. W., and J. L. Betancourt. 1990. Fire-Southern Oscillation relations in the southwestern United States. Science 249:1017-1020.

    Article  PubMed  CAS  Google Scholar 

  • Vankat, J. L., and J. Major. 1978. Vegetation changes in Sequoia National Park, California. Journal of Biogeography 5:377-402.

    Article  Google Scholar 

  • Westerling, A. L., T. J. Brown, A. Gershunov, D. R. Cayan, and M. D. Dettinger. 2003. Climate and wildfire in the Western United States. Bulletin of the American Meteorological Society 84(5):595-604.

    Article  Google Scholar 

  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increases Western United States forest wildfire activity. Science 313:940-943.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. -H., M. J. Wooster, O. Tutubalina, and G. L. W. Perry. Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sensing of Environment 87:1-15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Holmes, T.P., Huggett, R.J., Westerling, A.L. (2008). Statistical Analysis of Large Wildfires. In: Holmes, T.P., Prestemon, J.P., Abt, K.L. (eds) The Economics of Forest Disturbances. Forestry Sciences, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4370-3_4

Download citation

Publish with us

Policies and ethics