Skip to main content

The Interaction of Ferredoxin with Ferredoxin-Dependent Enzymes

  • Chapter
Photosystem I

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 24))

Abstract

Ferredoxin, reduced by Photosystem I (PS I) in the light, serves as the electron donor for the reduction of NADP+ to NADPH, of sulfite to sulfide, of nitrite to ammonia and for the reductant-requiring of glutamate and 2-oxoglutarate to glutamate in all oxygenic photosynthetic organisms. Reduced ferredoxin also serves as the electron donor for the reduction of nitrate to nitrite in cyanobacteria. In addition to its role in supplying a source of electrons for the net reduction of oxidized species in reductant-requiring assimilatory pathways, reduced ferredoxin plays an important role, via the ferredoxin/thioredoxin system, in the regulation of carbon assimilation and other pathways. This chapter focuses on the interactions between ferredoxin and six enzymes that utilize reduced ferredoxin as an electron donor (NADP+ reductase, nitrate reductase, nitrite reductase, glutamate synthase, sulfite reductase, and thioredoxin reductase). The mechanisms of several of these enzymes will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi T, Matsumura T, Ideguchi T, Iwakiri K, Kawakatsu T, Taniguchi I and Hase T (1999) Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP+ reductase and sulfite reductase. J Biol Chem 274: 29399–29405

    Article  PubMed  CAS  Google Scholar 

  • Aliverti A, Deng Z, Ravasi D, Piubelli L, Karplus PA and Zanetti (1998) Probing the function of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase. J Biol Chem 273: 34008–34015

    Article  PubMed  CAS  Google Scholar 

  • Aliverti A, Faber R, Finnerty CM, Ferioli C, Pandini V, Negri A, Karplus PA and Zanettti G (2001) Biochemical and crystallographic characterization of ferredoxin-NADP+ reductase from nonphotosynthetic tissues. Biochemistry 40: 14501–14508

    Article  PubMed  CAS  Google Scholar 

  • Aliverti A, Pandini V and Zanetti G (2004) Domain exchange between isoforms of ferredoxin-NADP+ reductase produces a functional enzyme. Biochim Biophys Acta 1696: 93–101

    PubMed  CAS  Google Scholar 

  • Aoki H, Tanaka K and Ida S (1995) The genomic organization of the gene encoding a nitrate-inducible ferredoxin-NADP+ oxidoreductase from rice roots. Biochim Biophys Acta 1229: 389–392

    Article  PubMed  Google Scholar 

  • Aparico PJ, Knaff DB and Malkin R (1975) The role of an iron–sulfur center and siroheme in spinach nitrite reductase. Arch Biochem Biophys 169: 102–107

    Article  Google Scholar 

  • Back E, Burkhart W, Moyer M, Privalle L and Rothstein S (1988) Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction. Mol Gen Genet 212: 20–26

    Article  PubMed  CAS  Google Scholar 

  • Batie CJ and Kamin H (1984) Ferredoxin-NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin. J Biol Chem 259: 8832–8839

    PubMed  CAS  Google Scholar 

  • Bellissimo DB and Privalle LS (1995) Expression of spinach nitrite reductase in Escherichia coli: site-directed mutagenesis of predicted active site amino acids. Arch Biochem Biophys 323: 155–163

    Article  PubMed  CAS  Google Scholar 

  • Binda C, Coda A, Aliverti A, Zanetti G and Mattevi A (1998) Structure of the mutant E92K of [2Fe–2S] ferredoxin from Spinacia oleracea at 1.7 Å resolution. Acta Crystallogr D 54: 1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Binda C, Bossi RT, Wakatsuki S, Artz S, Coda A, Curti B, Vanoni MA and Mattevi A (2000) Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase. Structure 6: 1299–1308

    Article  Google Scholar 

  • Cammack R, Hucklesby DP and Hewitt EJ (1978) Electron-paramagnetic-resonance studies of the mechanism of leaf nitrite reductase. Biochem J 171: 519–526

    PubMed  CAS  Google Scholar 

  • Carrillo N and Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270: 1900–1915

    Article  PubMed  CAS  Google Scholar 

  • Chow L-P, Iwadate H, Yano K, Kamo M, Tsugita A, Gardet-Salvi L, Stritt-Etter A-L and Schürmann P (1995) Amino acid sequence of spinach ferredoxin:thioredoxin reductase catalytic subunit and identification of thiol groups constituting a redox active disulfide and a [4Fe–4S] cluster. Eur J Biochem 231: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Christner JA, Münck E, Janick PA and Siegel LM (1981) Müssbauer spectroscopic studies of Escherichia coli sulfite reductase. J Biol Chem 256: 2089–2101

    Google Scholar 

  • Crane BR, Siegel LM and Getzoff ED (1995) Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anions. Science 270: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Crane BR, Siegel LM and Getzoff ED (1997) Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products. Biochemistry 36: 12120–12137

    Article  PubMed  CAS  Google Scholar 

  • Curdt I, Singh BB, Jakoby M, Hachtel W and Böhme H (2000) Identification of amino acid residues of nitrite reductase from Anabaena sp. PCC 7120 involved in ferredoxin binding. Biochim Biophys Acta 1543: 60–68

    PubMed  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, Johansson K, Ramaswamy S, Schürmann P and Eklund H (2000a) How does light regulate chloroplast enzymes? Structure–function studies of the ferredoxin/thioredoxin system. Q Rev Biophys 33: 67–108

    Article  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S and Eklund H (2000b) Redox signaling in chloroplasts: cleavage of disulfides by an iron–sulfur cluster. Science 287: 655–658

    Article  CAS  Google Scholar 

  • Dai S, Johansson K, Miginiac-Maslow M, Schürmann P and Eklund H (2004) Structural basis of redox signaling in photosynthesis: structure and function of ferredoxin:thioredoxin reductase and target enzymes. Photosynth Res 79: 233–248

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Halberg K, Schürmann P and Eklund H (2006) Light/dark regulation of chloroplast metabolism. In: Wise RR and Hoober JK (eds) Structure and Function of Plastids, pp 221–236. Springer, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Deng Z, Aliverti A, Zanetti G, Arakaki AK, Ottado J, Orellano EG, Calcaterra NB, Ceccarelli EA, Carrillo N and Karplus PA (1999) A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol 6: 847–853

    Article  PubMed  CAS  Google Scholar 

  • De Pascalis AR, Schürmann P and Bosshard HR (1994) Comparison of the binding sites of plant ferredoxin for two ferredoxin-dependent enzymes. FEBS Lett 337: 217–220

    Article  PubMed  Google Scholar 

  • Dose MM, Hirasawa M, Kleis-SanFrancisco S, Lew EL and Knaff DB (1997) The ferredoxin-binding site of ferredoxin:nitrite oxidoreductase. Plant Physiol 114: 1047–1053

    Article  PubMed  CAS  Google Scholar 

  • Flores E and Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 487–517. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Follmann H (2000) Light-dark and thioredoxin-mediated metabolic redox control in plant cells. In: Vanden Driessche T, Guisset J-L and Petiau-de Vries GM (eds) The Redox State and Circadian Rhythms, pp 59–83. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Foust GP, Mayhew SG and Massey V (1969) Complex formation between ferredoxin triphosphopyridine nucleotide reductase and electron transfer proteins. J Biol Chem 244: 964–970

    PubMed  CAS  Google Scholar 

  • Foyer CH, Ferrario-Méry S and Noctor G (2001) Interactions between carbon and nitrogen assimilation. In Lea PJ and Morot-Gaudry JF (eds) Plant Nitrogen, pp 237–254. Springer, Berlin

    Google Scholar 

  • Fry IV, Cammack, R, Hucklesby DP and Hewitt EJ (1980) Stability of the nitrosyl-heme complex of plant nitrite reductase, investigated by EPR spectroscopy. FEBS Lett 111: 377–380

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama K (2004) Structure and function of plant type ferredoxins. Photosynth Res 81: 289–301

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama K, Hase T, Matsumoto S, Tsukihara T, Katsube Y, Tanaka N, Kakudo M, Wada K and Matsubara H (1980) Structure of S. platensis (2Fe–2S) ferredoxin and evolution of chloroplast-type ferredoxin. Nature 286: 522–523

    Article  CAS  Google Scholar 

  • García-Sánchez MI, Gotor C, Jacquot J-P, Stein M, Suzuki A and Vega JM (1997) Critical residues of Chlamydomonas reinhardtii ferredoxin for interaction with nitrite reductase and glutamate synthase revealed by site-directed mutagenesis. Eur J Biochem 250: 364–368

    Article  PubMed  Google Scholar 

  • García-Sánchez MI, Díaz-Quintana A, Gotor C, Jacquot J-P, De la Rosa MA and Vega JM (2000) Homology predicted structure and functional interaction of ferreodxin from the eukaryotic alga Chlamydomonas reinhardtii with nitrite reductase and glutamate synthase. J Biol Inorg Chem 5: 713–719

    Article  PubMed  Google Scholar 

  • Gaymard E, Franchini L, Manieri W, Stutz E and Schürmann P (2000) A dicistronic construct for the expression of functional spinach chloroplast ferredoxin:thioredoxin reductase in E. coli. Plant Sci 158: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Glauser DA, Bourquin F, Manieri W and Schürmann P (2004) Characterization of ferredoxin:thioredoxin reductase (FTR) modified by site-directed mutagenesis. J Biol Chem 279: 16662–16669

    Article  PubMed  CAS  Google Scholar 

  • Green LS, Yee BC, Buchanan BB, Kamide K, Sanada Y and Wada K (1991) Ferredoxin and ferredoxin-NADP+ reductase from photosynthetic and non-photosynthetic tissues of tomato. Plant Physiol 96: 1207–1213

    PubMed  CAS  Google Scholar 

  • Hanke G, Kimata-Ariga Y, Taniguchi I and Hase T (2004a) A post genomic characterization of Arabidopsis ferredoxins. Plant Physiol 134: 255–264

    Article  CAS  Google Scholar 

  • Hanke G, Kurisu G, Kusunoki M and Hase T (2004b) Fd:FNR electron transfer complexes: evolutionary refinement of structural interactions. Photosynth Res 81: 317–327

    Article  CAS  Google Scholar 

  • Hase T, Kimata Y, Matsumura T and Sakakibara H (1991) Molecular cloning and differential expression of the maize ferredoxin family. Plant Physiol 96: 77–83

    PubMed  CAS  Google Scholar 

  • Hirasawa M and Knaff DB (1993) The role of lysine and arginine residues at the ferredoxin-binding site of spinach glutamate synthase. Biochim Biophys Acta 1144: 85–91

    Article  CAS  Google Scholar 

  • Hirasawa M, Boyer JM, Gray KA, Davis DJ and Knaff DB (1986) The interaction of ferredoxin with chloroplast ferredoxin-linked enzymes. Biochim Biophys Acta 851: 23–28

    Article  CAS  Google Scholar 

  • Hirasawa M, Boyer JM, Gray KA, Davis DJ and Knaff DB (1987) The interaction of ferredoxin-linked sulfite reductase with ferredoxin. FEBS Lett 221: 343–348

    Article  CAS  Google Scholar 

  • Hirasawa M, Droux M, Gray KA, Boyer JM, Davis DJ, Buchanan BB and Knaff DB (1988) Ferredoxin-thioredoxin reductase: properties of its complex with ferredoxin. Biochim Biophys Acta 935: 1–8

    Article  CAS  Google Scholar 

  • Hirasawa M, Chang K-T, Morrow KJ and Knaff DB (1989) Circular dichroism, binding and immunological studies on the interaction between spinach ferredoxin and glutamate synthase. Arch Biochem Biophys 977: 150–156

    Article  CAS  Google Scholar 

  • Hirasawa M, Chang K-T and Knaff DB (1991) The interaction of ferredoxin and glutamate synthase: cross-linking and immunological studies. Arch Biochem Biophys 286: 171–177

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Robertson DE, Ameyibor E, Johnson MK and Knaff DB (1992) Oxidation–reduction properties of the ferredoxin-linked glutamate synthase from spinach leaf. Biochim Biophys Acta 1100: 105–108

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, de Best JH and Knaff DB (1993) The effect of lysine- and arginine-modifying reagents on spinach ferredoxin:nitrite oxidoreductase. Biochim Biophys Acta 1140: 304–312

    Article  CAS  Google Scholar 

  • Hirasawa M, Tollin G, Salamon Z and Knaff DB (1994a) Transient kinetic and oxidation–reduction studies of spinach ferredoxin:nitrite oxidoreductase. Biochim Biophys Acta 1185: 80–85

    Google Scholar 

  • Hirasawa M, Proske PA and Knaff DB (1994b) The role of tryptophan in the reaction catalyzed by spinach ferredoxin-dependent nitrite reductase. Biochim Biophys Acta 1187: 80–88

    Article  CAS  Google Scholar 

  • Hirasawa M, Hurley JK, Salamon Z, Tollin G, and Knaff DB (1996) Oxidation-reduction and transient kinetic studies of spinach ferredoxin-dependent glutamate synthase. Arch Biochem Biophys 330: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Dose MM, Kleis-SanFrancisco S, Hurley JK, Tollin G and Knaff DB (1998) A conserved tryptophan at the ferredoxin-binding site of ferredoxin:nitrite oxidoreductase. Biochim Biophys Acta 354: 95–101

    CAS  Google Scholar 

  • Hirasawa M, Schürmann P, Jacquot J-P, Manieri W, Jacquot P, Keryer E, Hartman FC and Knaff DB (1999) Oxidation–reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase and thioredoxin f-regulated enzymes. Biochemistry 38: 5200–5205

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Rubio LM, Griffin JL, Flores E, Herrero A, Li J, Kim H-K, Hurley JK, Tollin G and Knaff DB (2004a) Complex formation between ferredoxin and Synechococcus ferredoxin:nitrate oxidoreductase. Biochim Biophys Acta 1608: 155–162

    Article  CAS  Google Scholar 

  • Hirasawa M, Nakayama M, Hase T and Knaff D (2004b) Oxidation–reduction properties of maize chloroplast ferredoxin sulfite oxidoreductase. Biochim Biophys Acta 1608: 140–148

    Article  CAS  Google Scholar 

  • Holden HM, Jacobsen BL, Hurley JK, Tollin G, Oh B-H, Skeldal L, Chao YK, Xia B and Markley JL (1994) Structure–function studies of [2Fe–2S] ferredoxins. J Bioenerg 26: 67–87

    Article  CAS  Google Scholar 

  • Holmgren A (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3: 239–243

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK (1984) Chloroplasts. Plenum Press, New York

    Google Scholar 

  • Hurley JK, Fillat MF, Gómez-Moreno C and Tollin G (1966) Electrostatic and hydrophobic interactions during complex formation and electron transfer in ferredoxin/ ferredoxin:NADP+ reductase system from Anabaena. J Am Chem Soc 118: 5526–5531

    Article  Google Scholar 

  • Jacquot J-P, Lancelin J-M and Meyer Y (1997a) Thioredoxins: structure and function in plant cells. New Phytol 136: 543–570

    Article  CAS  Google Scholar 

  • Jacquot J-P, Stein M, Suzuki K, Liottet S, Sandoz G and Miginiac-Maslow M (1997b) Residue Glu-91 of Chlamydomonas reinhardtii ferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. FEBS Lett 400: 293–296

    Article  CAS  Google Scholar 

  • Jameson GNL, Walters EM, Manieri W, Schürmann P, Johnson MK and Huynh BH (2003) Spectroscopic evidence for site specific chemistry at a unique iron site of the [4Fe–4S] cluster in ferredoxin:thioredoxin reductase. J Am Chem Soc 125: 1146–1147

    Article  PubMed  CAS  Google Scholar 

  • Janick PA and Siegel LM (1982) Electron paramagnetic resonance and optical spectroscopic evidence for interaction between siroheme and Fe4S4 prosthetic groups in Escherichia coli sulfite reductase hemoprotein subunit. Biochemistry 21: 3538–3547

    Article  PubMed  CAS  Google Scholar 

  • Jelesarov I and Bosshard HR (1994) Thermodynamics of ferredoxin binding to ferredoxin:NADP+ reductase and the role of water at the complex interface. Biochemistry 33: 13321–133328

    Article  PubMed  CAS  Google Scholar 

  • Jepson BJN, Anderson LJ, Rubio LM, Taylor CJ, Butler CS, Flores E, Herrero A, Butt JN and Richardon DJ (2004) Tuning a nitrate reductase for function: the first spectro-potentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox properties. J Biol Chem 279: 32212–32218

    Article  PubMed  CAS  Google Scholar 

  • Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 333–361. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Knaff DB (2000) Oxidation–reduction properties of thioredoxins and thioredoxin-regulated enzymes. Physiol Plant 110: 309–313

    Article  CAS  Google Scholar 

  • Krueger RJ and Siegel LM (1982a) Spinach siroheme enzymes: isolation and characterization of ferredoxin-sulfite reductase and comparison with properties with ferredoxin-nitrite reductase. Biochemistry 21: 2892–2904.

    Article  CAS  Google Scholar 

  • Krueger RJ and Siegel LM (1982b) Evidence for siroheme–Fe4S4 interaction in spinach ferredoxin-sulfite reductase. Biochemistry 21: 2905–2909

    Article  CAS  Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y and Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nat Struct Biol 8: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova S, Knaff DB, Hirasawa M, Lagoutte B and Sétif P (2004a) Mechanism of spinach chloroplast ferredoxin-dependent nitrite reductase: spectroscopic evidence for intermediate states. Biochemistry 43: 510–517

    Article  CAS  Google Scholar 

  • Kuznetsova S, Knaff DB, Hirasawa M, Sétif P and Mattioli TA (2004b) Reactions of spinach nitrite reductase with its substrate, nitrite, and a putative intermediate, hydroxylamine. Biochemistry 43: 10765–10774

    Article  CAS  Google Scholar 

  • Lancaster JR, Vega JM, Kamin H, Orme-Johnson NR, Orme-Johnson WH, Krueger RJ and Siegel LM (1979) Identification of the iron–sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J Biol Chem 254: 1268–1272

    PubMed  CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1993) Nitrite reductase gene from Synechococcus sp. PCC 7942: homolgy between cyanobacterial and higher-plant nitrite reductase. Plant Mol Biol 21: 1201–1205

    Article  PubMed  CAS  Google Scholar 

  • Manieri W, Franchini L, Raeber L, Dai S, Stritt-Etter A-L and Schürmann P (2003) N-terminal truncation of the variable subunit stabilizes spinach ferredoxin:thioredoxin reductase. FEBS Lett 549: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Matsubara H and Hase T (1983) Phylogenetic consideration of ferredoxin sequences in plants, particularly algae. In: Jensen U and Fairbrother DE (eds) Proteins and Nucleic Acids in Plant Systematics, pp 168–181. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Mayoral T, Medina M, Sanz-Aparicio J, Gomez-Moreno C and Hermoso J (2000) Structure basis of the catalytic role of Glu301 in Anabaena PCC 7119 ferredoxin-NADP+ reductase revealed by X-ray crystallography. Proteins 38: 60–69

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Martinez-Julvez M, Hurley JK, Tollin G and Gomez-Moreno (1998) Involvement of glutamic acid 301 in the catalytic mechanism of ferredoxin-NADP+ reductase from Anabaena PCC 7119. Biochemistry 37: 2715–2728

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Verdoucq L and Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4: 388–394

    Article  PubMed  Google Scholar 

  • Meyer Y, Miginiac-Maslow M, Schürmann P and Jacquot J-P (2001) Protein–protein interactions in the plant thioredoxin dependent systems. In: McManus MT, Laing W and Allan A (eds) The Annual Plant Reviews, pp 1–29. Sheffield Academic Press, Sheffield, England

    Google Scholar 

  • Mikami B and Ida S (1989) Spinach ferredoxin-nitrite reductase: characterization of catalytic activity and interaction of the enzyme with substrates. J Biochem 105: 47–50

    PubMed  CAS  Google Scholar 

  • Morales R, Charon M-H, Kachaova G, Serre L, Medina M, Gómez-Moreno C and Frey M (2000) A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep 1: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Morigasaki S, Takata K, Suzuki T and Wada K (1990) Purification and characterization of a ferredoxin-NADP+ oxidoreductase-like enzyme from radish root tissues. Plant Physiol 93: 896–901

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Akashi T and Hase T (2000) Plant sulfite reductase molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Navarro F, Martín-Figueroa E, Candau P and Florencio FJ (2000) Ferredoxin-dependent iron–sulfur flavoprotein glutamate synthase (GlsF) from the cyanobacterium Synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. Arch Biochem Biophys 379: 267–276

    Article  PubMed  CAS  Google Scholar 

  • Nelson N and Neumann J (1969) Interaction between ferredoxin and ferredoxin nicotinamide dinucleotide phosphate reductase in pyridine nucleotide photoreduction and some partial reactions. J Biol Chem 244: 1932–1936

    PubMed  CAS  Google Scholar 

  • Neuhaus HE and Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51: 111–140

    Article  PubMed  CAS  Google Scholar 

  • Okuhara H, Matsumura T, Fujita Y and Hase T (1999) Cloning and inactivation of genes encoding ferredoxin- and NADH-dependent glutamate synthases in the cyanobacterium Plectonema boryanum. Imbalances in nitrogen and carbon assimilations caused by deficiency of the ferredoxin-dependent enzyme. Plant Physiol 120: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Onda Y, Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T and Hase T (2000) Differential interaction of maize root ferredoxin:NADP+ oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol 123: 1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Privalle LS, Privalle CT, Leonardy NJ, and Kamin H (1985) Interactions between spinach ferredoxin-nitrite reductase and its substrates. Evidence for the specificity of ferredoxin. J Biol Chem 260: 14344–14350

    PubMed  CAS  Google Scholar 

  • Ravasio S, Dossena l, Martin-Figueroa E, Florencio FJ, Mattevi A, Morandi P, Curti B and Vanoni MA (2002) Properties of recombinant ferredoxin-dependent glutamate synthase of Synechocystis PCC 6803. Comparison with the Azospirillum brasilense NADPH-dependent enzyme and its isolated α subunit. Biochemistry 41: 8120–8133

    Article  PubMed  CAS  Google Scholar 

  • Ritchie SW, Redinbaugh MG, Shiraishi N, Vrba JM and Campbell WH (1994) Identification of a maize root transcript expressed in the primary response to nitrate: characterization of a cDNA with homology to ferredoxin-NADP+ oxidoreductase. Plant Mol Biol 26: 678–690

    Article  Google Scholar 

  • Rubio LM, Herrero A and Flores E (1996) A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. Plant Mol Biol 30: 845–850

    Article  PubMed  CAS  Google Scholar 

  • Rubio LM, Flores E and Herrero A (2002) Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase. Photosynth Res 72: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E and Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci 4: 136–141

    Article  PubMed  Google Scholar 

  • Saito T, Toyota H, Nakayama M, Ilegami T, Kurisu G and Hase T (2005) NMR study of the interaction between plant sulfite reductase and ferredoxin. In: Saito K, de Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A and Rennenberg H (eds) Sulfur Transport and Assimilation in the Post-Genomic Era, pp 87–89. Proceedings of 6th International Workshop on Plant Sulfur Metabolism. Backhuys Pub., Leiden

    Google Scholar 

  • Schmitz S and Böhme H (1995) Amino acid residues involved in functional interaction of vegetative cell ferredoxin from the cyanobacterium Anabaena sp. PCC 7120 with ferredoxin:NADP reductase, nitrite reductase and nitrate reductase. Biochim Biophys Acta 1231: 335–341

    Article  Google Scholar 

  • Schürmann P (2003a) Redox signaling in the chloroplast –the ferredoxin/thioredoxin system. Antioxid Redox Signal 5: 69–78

    Article  CAS  Google Scholar 

  • Schürmann P (2003b) The ferredoxin/thioredoxin system. A light-dependent redox regulatory system in oxygenic photosynthetic cells. In: Gitler C and Danon A (eds) Cellular Implications of Redox Signaling, pp 73–98. World Scientific Publishing Co Pte Ltd, Singapore

    Google Scholar 

  • Schürmann P and Buchanan BB (2001) The structure and function of the ferredoxin/thioredoxin system in photosynthesis. In: Aro E-M and Andersson B (eds) Advances in Photosynthesis and Respiration, pp 331–361. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Schürmann P and Jacquot J-P (2000) Plant thioredoxin systems revisited. In: Jones RL, Bohnert HJ and Delmer DP (eds) Annual Review of Plant Physiology and Plant Molecular Biology, pp 371–400. Annual Reviews, Inc., Palo Alto, USA

    Google Scholar 

  • Schwendtmayer C, Manieri W, Hirasawa M, Knaff DB and Schürmann P (1998) Cloning, expression and characterization of ferredoxin:thioredoxin reductase from Synechocystis sp. PCC 6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 3, pp 1927–1930. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Setya A, Murillo M and Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylylsulfate reductase. Proc Natl Acad Sci USA 93: 13383–13388

    Article  PubMed  CAS  Google Scholar 

  • Shin M and San Pietro A (1968) Complex formation between ferredoxin-NADP reductase with ferredoxin and with NADP. Biochem Biophys Res Comm 33: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Siegel LM, Rueger DC, Barber MJ, Krueger RJ, Orme-Johnson NR and Orme-Johnson WH (1982) Escherichia coli sulfite reductase hemoprotein subunit. Prosthetic groups, catalytic parameters and ligand complexes. J Biol Chem 257: 6343–6350

    PubMed  CAS  Google Scholar 

  • Smith JM, Smith WH and Knaff DB (1981) Electrochemical titrations of a ferredoxin-ferredoxin-NADP+ reductase complex. Biochim Biophys Acta 635: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Staples CR, Ameyibor E, Fu W, Gardet-Salvi L, Stritt-Etter A-L, Schürmann P, Knaff DB and Johnson MK (1996) The nature and properties of the iron–sulfur center in spinach ferredoxin:thioredoxin reductase: a new biological role for iron–sulfur clusters. Biochemistry 35: 11425–11434

    Article  PubMed  CAS  Google Scholar 

  • Staples CR, Gaymard E, Stritt-Etter AL, Telser J, Hoffman BM, Schürmann P, Knaff DB and Johnson MK (1998) Role of the [Fe4S4] cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37: 4612–4620

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A and Knaff DB (2005) Nitrogen metabolism and roles of glutamate synthase in higher plants. Photosyn Res 83: 191–217

    Article  PubMed  CAS  Google Scholar 

  • Swamy U, Wang M, Tripathy JN, Kim SK, Hirasawa M, Knaff DB, and Allen JP (2005) Structure of spinach nitrite reductase: implications for multi-electron reactions by the iron–sulfur:siroheme cofactor. Biochemistry 44: 16054–16063

    Article  PubMed  CAS  Google Scholar 

  • Teshima K, Fujita S, Hirose S, Nishiyama S, Kurisu G, Kusunoki M, Kimata-Ariga Y and Hase T (2003) A ferredoxin Arg–Glu pair important for efficient electron transfer between ferredoxin and ferredoxin-NADP+ reductase. FEBS Lett 546: 189–194

    Article  PubMed  CAS  Google Scholar 

  • Valentin K, Kostrzewa M and Zetsche K (1993) Glutamate synthase is plastid-encoded in a red alga: implications for the evolution of glutamate synthases. Plant Mol Biol 23: 77–85

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel RHH, Ferrari D, Bossi RT, Ravasio S, Curti B, Vanoni MA, Florencio FJ and Mattevi A (2002) Structural studies on the synchronization of catalytic centers in glutamate synthase. J Biol Chem 277: 24579–24583

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel RHH, Svergun DI, Petoukhov MV, Coda A, Curti B, Ravasio S, Vanoni MA and Mattevi A (2003) The active conformation of glutamate synthase and its binding to ferredoxin. J Mol Biol 330: 113–128

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel RHH, Curti B, Vanoni MA and Mattevi A (2004) Glutamate synthase: a fascinating pathway from l-glutamine to l-glutamate. Cell Mol Life Sci 61: 669–681

    Article  PubMed  CAS  Google Scholar 

  • Vanoni MA and Curti B (1999) Glutamate synthase: a complex iron–sulfur flavoprotein. Cell Mol Life Sci 55: 617–638

    Article  PubMed  CAS  Google Scholar 

  • Vanoni MA, Dossena L, van den Heuvel R and Curti B (2005) Structure–function studies on the complex iron–sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation. Photosynth Res 83: 219–238

    Article  PubMed  CAS  Google Scholar 

  • Vega JM and Kamin H (1977) Spinach nitrite reductase. Purification and properties of a siroheme-containing iron–sulfur enzyme. J Biol Chem 252: 896–909

    PubMed  CAS  Google Scholar 

  • Vigara AJ, García-Sánchez MI, Gotor C and Vega JM (1996) Interaction between glutamate synthase and ferredoxin from Monoraphidium braunii. Chemical modification and cross-linking studies. Plant Physiol Biochem 34: 707–711

    CAS  Google Scholar 

  • Walters EM and Johnson MK (2004) Ferredoxin:thioredoxin reductase: disulfide reduction catalyzed via novel site-specific [4Fe–4S] cluster chemistry. Photosynth Res 79: 249–264

    Article  PubMed  CAS  Google Scholar 

  • Wilkerson JO, Janick PA and Siegel LM (1983) Electron paramagnetic resonance and optical spectroscopic evidence for interaction between siroheme and tetranuclear iron–sulfur center prosthetic groups in spinach ferredoxin-nitrite reductase. Biochemistry 22: 5048–5054

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T and Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs in maize. Plant Physiol 122: 887–894

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hase, T., Schürmann, P., Knaff, D.B. (2006). The Interaction of Ferredoxin with Ferredoxin-Dependent Enzymes. In: Golbeck, J.H. (eds) Photosystem I. Advances in Photosynthesis and Respiration, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4256-0_28

Download citation

Publish with us

Policies and ethics