Skip to main content

ANALYSIS OF POST-FAILURE BEHAVIOUR

  • Conference paper
Landslides from Massive Rock Slope Failure

Part of the book series: NATO Science Series ((NAIV,volume 49))

Abstract

Landslides are known to travel further than expected from the coefficient of friction of their material. In some cases, this is just because the ratio of the height lost to the horizontal distance travelled (H/L), which is compared to the coefficient of friction, is not computed from the centre of mass of the deposit, as it should be, but from the distal end. Simple spreading of the landslide mass can then explain the excess runout. However, spreading alone is not able to explain the spectacular runout of most landslides, for which the centre of mass does travel further than predicted for a frictionally-controlled slide. The long travel distance of the centre of mass cannot be explained by dry granular models. As it is well known that water reduces solid friction in debris flows, and that significant amounts of water are present in many landslides, it is proposed here that water is the main cause for the unexpectedly high mobility of landslides. Water in the debris also introduces a viscous dissipative stress which can account for the relatively channelled behaviour of landslides over topography. The difference between landslides and debris flows is wholly gradational and related to the water content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, C.S. (1989) Self-lubrication for long runout landslides, J. Geol. 97, 653–665.

    Article  Google Scholar 

  2. Campbell, C.S., Cleary, P.W., and Hopkins, M. (1995) Large-scale landslide simulations: Global deformation, velocities and basal friction, J. Geophys. Res. 100, 8267–8273.

    Article  Google Scholar 

  3. Cleary, P.W. and Campbell, C.S. (1993) Self-lubrication for long-runout landslides: examination by computer simulations, J. Geophys. Res. 98, 21911–21924.

    Google Scholar 

  4. Davies, T.R.H. (1982) Spreading of rock avalanche debris by mechanical fluidization, Rock Mech. 15, 9–24.

    Article  Google Scholar 

  5. Davies, T.R.H. and McSaveney, M.J. (1999) Runout of dry granular avalanches, Can. Geotech. J. 36, 313–320.

    Article  Google Scholar 

  6. Davies, T.R.H., McSaveney, M.J., and Hodgson, K.A. (1999) A fragmentation-spreading model for long-runout rock avalanches, Can. Geotech. J. 36, 1096–1110.

    Article  Google Scholar 

  7. Erlichson, H. (1991) A mass-change model for the estimation of debris-flow runout, a second discussion: conditions for the application of the rocket equation, J. Geol. 99, 633–634.

    Google Scholar 

  8. Hampton, M.A, Lee, H.J., and Locat, J. (1996) Submarine landslides, Rev. Geophys. 34, 33–59.

    Article  Google Scholar 

  9. Hayashi, J.N. and Self, S. (1992) A comparison of pyroclastic flow and landslide mobility, J. Geophys. Res. 97, 9063–9071.

    Google Scholar 

  10. Heim, A. (1932) Bergsturz und Menschenleben, Fretz und Wasmuth, Zörich.

    Google Scholar 

  11. Howard, K.E. (1973) Avalanche mode of motion: implications from lunar examples, Science 180, 1052–1055.

    Article  Google Scholar 

  12. Hsü, K.J. (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls, Geol. Soc. Am. Bull. 86, 129–140.

    Article  Google Scholar 

  13. Hungr, O. and Morgenstern, N.R. (1984) Experiments on the flow behaviour of granular materials at high velocity in an open channel, Géotechnique 34, 405–413.

    Google Scholar 

  14. Hungr, O. and Morgenstern, N.R. (1984) High-velocity ring shear test on sand, Géotechnique 34, 415–421.

    Google Scholar 

  15. Hungr, O. (1990) A mass-change model for the estimation of debris-flow runout: a discussion, J. Geol. 98, 791.

    Article  Google Scholar 

  16. Iverson, R.M. (1997) The physics of debris flows, Rev. Geophys. 35, 245–296.

    Article  Google Scholar 

  17. Iverson, R.M., Reid, M.E., and Lahusen, R.G. (1997) Debris-flow mobilization from landslides, Ann. Rev. Earth Planet. Sci. 25, 85–138.

    Article  Google Scholar 

  18. Iverson, R.M., Schilling, S.P., and Vallance, J.W. (1998) Objective delineation of lahar-inundation hazard zones, Geol. Soc. Am. Bull. 110, 972–984.

    Article  Google Scholar 

  19. Johnson, B. (1978) Blackhawk landslide, California, U.S.A, in B. Voight (ed), Rockslides and avalanches. 1. Natural phenomena, Elsevier, Amsterdam, pp. 481–504.

    Google Scholar 

  20. Legros, F. (2002) Can dispersive pressure cause inverse grading in grain flows ?, J. Sedim. Res. 72, 171–175.

    Google Scholar 

  21. Legros, F. (2002) The mobility of long-runout landslides, Eng. Geol. 63, 301–331.

    Article  Google Scholar 

  22. Legros, F., Cantagrel, J.-M., and Devouard, B. (2000) Pseudotachylyte (frictionite) at the base of the Arequipa volcanic landslide deposit (Peru) and implications for emplacement mechanisms, J. Geol. 108, 601–611.

    Article  Google Scholar 

  23. Lipman, P.W., Normark, W.R., Moore, J.G., Wilson, J.B., and Gutmacher, C.E. (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaii, J. Geophys. Res. 93, 4279–4299.

    Article  Google Scholar 

  24. Lucchitta, B.K. (1977) Crater clusters and light mantle at the Apollo 17 site; A result of secondary impact from Tycho, Icarus 30, 80–96.

    Article  Google Scholar 

  25. Major, J.J. (2000) Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics, J. Sedim. Res. 70, 64–83.

    Google Scholar 

  26. Major, J.J. and Iverson, R.M. (1999) Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull. 111, 1424–1434.

    Article  Google Scholar 

  27. McEwen, A.S. (1989) Mobility of large rock avalanches: evidence from Valles Marineris, Mars, Geology 17, 1111–1114.

    Article  Google Scholar 

  28. McEwen, A.S. and Malin, M.C. (1989) Dynamics of Mount St. Helens 1980 pyroclastic flows, rockslide-avalanche, lahars and blast, J. Volcanol. Geotherm. Res. 37, 205–231.

    Article  Google Scholar 

  29. Mothes, P.A., Hall, M.L., and Janda, R.J. (1998) The enormous Chillos Valley Lahar: an ash-flowgenerated debris flow from Cotopaxi Volcano, Ecuador, Bull. Volcanol. 59, 233–244.

    Article  Google Scholar 

  30. Palmer, B.A., Alloway, B.V., and Neall, V.E. (1991) Volcanic-debris-avalanche deposits in New-Zealand: lithofacies organisation in unconfined, wet-avalanche flows, Sedimentation in volcanic settings, SEPM Special Publication 45, 89–98.

    Google Scholar 

  31. Plafker, G. and Ericksen, G.E. (1978) Nevados Huascarán avalanches, Peru, in B. Voight (ed), Rockslides and avalanches. 1. Natural Phenomena, Elsevier, Amsterdam, pp. 277–314.

    Google Scholar 

  32. Savage, S.B.and Hutter, K (1989) The motion of a finite mass of granular material down a rough incline, J. Fluid Mech. 199, 177–215.

    Article  Google Scholar 

  33. Shaller, P.J. and Smith-Shaller, A (1996) Review of proposed mechanisms for Sturzstroms (longrunout landslides), in P.L. Abott and D.C Semour (eds), Sturzstroms and detachment faults, Anbza-Boreego Desert State Park, California. South Coast, Geological Society, Santa Ana, pp. 185–202.

    Google Scholar 

  34. Shreve, R.L. (1968) The Blackhawk landslide, Geol. Soc. Am. Special Paper 108, 1–47.

    Google Scholar 

  35. Shreve, R.L. (1968) Leakage and fluidisation in air-layer lubricated avalanches, Geol. Soc. Am. Bull. 79, 653–658.

    Article  Google Scholar 

  36. Siebe, C., Komorowski, J.-C., and Sheridan, M.F. (1992) Morphology and emplacement of an unusual debris-avalanche deposit at Jocotitlán volcano, Central Mexico, Bull. Volcanol. 54, 573–589.

    Article  Google Scholar 

  37. Siebert, L. (1984) Large volcanic debris avalanches: charcateristics of source areas, deposits, and assiociated eruptions, J. Volcanol. Geotherm. Res. 22, 163–197.

    Article  Google Scholar 

  38. Stoopes, G.R. and Sheridan, M.F. (1992) Giant debris avalanches from the Colima Volcanic Complex, Mexico: Implications for long-runout landslides (>100 km) and hazard assessment, Geology 20, 299–302.

    Article  Google Scholar 

  39. Straub, S. (1996) Self-organisation in the rapid flow of granular material: evidence for a major flow mechanism, Geol. Rundsch. 85, 85–91.

    Article  Google Scholar 

  40. Straub, S. (1997) Predictability of long runout landslide motion: implications from granular flow mechanics, Geol. Rundsch. 86, 415–425.

    Article  Google Scholar 

  41. Takarada, S., Ui, T., and Yamamoto, Y. (1999) Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan, Bull. Volcanol. 60, 508–522.

    Article  Google Scholar 

  42. Vallance, J.W. and Scott, K.M. (1997) The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow, Geol. Soc. Am. Bull. 109, 143–163.

    Article  Google Scholar 

  43. Van Gassen, W. and Cruden, D.M. (1989) Momentum transfer and the friction in the debris of rock landslides, Can. Geotech. J. 26, 623–628.

    Article  Google Scholar 

  44. Voight, B. and Sousa J. (1994) Lessons from Ontake-san: A comparative analysis of debris avalanche dynamics, Eng. Geol. 38, 261–297.

    Article  Google Scholar 

  45. Voight, B., Janda, R.J., Glicken, H., and Douglass P.M. (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of May 1980, Géotechnique 33, 243–273.

    Article  Google Scholar 

  46. Wilson, C.J.N. (1984) The role of fluidisation in the emplacement of pyroclastic flows, 2: Experimental results and their interpretation, J. Volcanol. Geotherm. Res. 20, 55–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

LEGROS, L.F. (2006). ANALYSIS OF POST-FAILURE BEHAVIOUR. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure. NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4037-5_13

Download citation

Publish with us

Policies and ethics