Skip to main content

Modeling the Dynamics of Dislocation Ensembles

  • Chapter
Handbook of Materials Modeling

Abstract

A fundamental description of plastic deformation is under development by several research groups as a result of dissatisfaction with the limitations of continuum plasticity theory. The reliability of continuum plasticity descriptions is dependent on the accuracy and range of available experimental data. Under complex loading situations, however, the database is often hard to establish. Moreover, the lack of a characteristic length scale in continuum plasticity makes it difficult to predict the occurrence of critical localized deformation zones. It is widely appreciated that plastic strain is fundamentally heterogenous, displaying high strains concentrated in small material volumes, with virtually undeformed regions in-between. Experimental observations consistently show that plastic deformation is internally heterogeneous at a number of length scales [13]. Depending on the deformation mode, heterogeneous dislocation structures appear with definitive wavelengths. It is common to observe persistent slip bands (PSBs), shear bands, dislocation pile ups, dislocation cells and sub grains. However, a satisfactory description of realistic dislocation patterning and strain localization has been rather elusive. Since dislocations are the basic carriers of plasticity, the fundamental physics of plastic deformation must be described in terms of the behavior of dislocation ensembles. Moreover, the deformation of thin films and nanolayered materials is controlled by the motion and interactions of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Mughrabi, “Dislocation wall and cell structures and long-range internal-stresses in deformed metal crystals”, Acta Met., 31, 1367, 1983.

    Article  Google Scholar 

  2. H. Mughrabi, “A 2-parameter description of heterogeneous dislocation distributions in deformed metal crystals”, Mat. Sci. & Eng., 85, 15, 1987.

    Article  Google Scholar 

  3. R. Amodeo and N.M. Ghoniem, “A review of experimental observations and theoretical models of dislocation cells”, Res. Mech., 23, 137, 1988.

    Google Scholar 

  4. J. Lepinoux and L.P. Kubin, “The dynamic organization of dislocation structures: a simulation”, Scripta Met., 21(6), 833, 1987.

    Article  Google Scholar 

  5. N.M. Ghoniem and R.J. Amodeo, “Computer simulation of dislocation pattern formation”, Sol. St. Phen., 3&4, 377, 1988.

    Article  Google Scholar 

  6. A.N. Guluoglu, D.J. Srolovitz, R. LeSar, and R.S. Lomdahl, “Dislocation distributions in two dimensions”, Scripta Met., 23, 1347, 1989.

    Article  Google Scholar 

  7. N.M. Ghoniem and R.J. Amodeo, “Numerical simulation of dislocation patterns during plastic deformation”, In: D. Walgreaf and N. Ghoniem (eds.), Patterns, Defects and Material Instabilities, Kluwer Academic Publishers, Dordrecht, p. 303, 1990.

    Google Scholar 

  8. R.J. Amodeo and N.M. Ghoniem, “Dislocation dynamics I: a proposed methodology for deformation micromechanics”, Phys. Rev., 41, 6958, 1990a.

    Article  ADS  Google Scholar 

  9. R.J. Amodeo and N.M. Ghoniem, “Dislocation dynamics II: applications to the formation of persistent slip bands, planar arrays, and dislocation cells”, Phy. Rev., 41, 6968, 1990b.

    ADS  Google Scholar 

  10. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Brechet, “Dislocation microstructures and plastic flow: a 3D simulation”, Diffusion and Defect Data-Solid State Data, Part B (Solid State Phenomena), 23–24, 455, 1992.

    Google Scholar 

  11. A. Moulin, M. Condat, and L.P. Kubin, “Simulation of frank-read sources in silicon”, Acta Mater., 45(6), 2339–2348, 1997.

    Article  Google Scholar 

  12. J.P. Hirth, M. Rhee, and H. Zbib, “Modeling of deformation by a 3D simulation of multi pole, curved dislocations”, J. Comp.-Aided Mat. Des., 3, 164, 1996.

    Article  ADS  Google Scholar 

  13. R.M. Zbib, M. Rhee, and J.P. Hirth, “On plastic deformation and the dynamics of 3D dislocations”, Int. J. Mech. Sci., 40(2–3), 113, 1998.

    Article  MATH  Google Scholar 

  14. K.V. Schwarz and J. Tersoff, “Interaction of threading and misfit dislocations in a strained epitaxial layer”, Appl. Phys. Lett., 69(9), 1220, 1996.

    Article  ADS  Google Scholar 

  15. K.W. Schwarz, “Interaction of dislocations on crossed glide planes in a strained epitaxial layer”, Phys. Rev. Lett., 78(25), 4785, 1997.

    Article  ADS  Google Scholar 

  16. L.M. Brown, “A proof of lothe’s theorem”, Phil. Mag., 15, 363–370, 1967.

    Article  MATH  ADS  Google Scholar 

  17. A.G. Khachaturyan, “The science of alloys for the 21st century: a hume-rothery symposium celebration”, In: E. Turchi and a. G.A.Shull, R.D. (eds.), Proc. Symp. TMS, TMS, 2000.

    Google Scholar 

  18. Y.U. Wang, Y.M. Jin, A.M. Cuitino, and A.G. Khachaturyan, “Presented at the international conference, Dislocations 2000, the National Institute of Standards and Technology”, Gaithersburg, p. 107, 2000.

    Google Scholar 

  19. Y. Wang, Y. Jin, A.M. Cuitino, and A.G. Khachaturyan, “Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations”, Acta Mat., 49, 1847, 2001.

    Article  Google Scholar 

  20. D. Walgraef and C. Aifantis, “On the formation and stability of dislocation patterns. I. one-dimensional considerations”, Int. J. Engg. Sci., 23(12), 1351–1358, 1985.

    Article  MATH  Google Scholar 

  21. J. Kratochvil and N. Saxlova, “Sweeping mechanism of dislocation patternformation”, Scripta Metall. Mater., 26, 113–116, 1992.

    Article  Google Scholar 

  22. P. Hähner, K. Bay, and M. Zaiser, “Fractal dislocation patterning during plastic deformation”, Phys. Rev. Lett., 81(12), 2470, 1998.

    Article  ADS  Google Scholar 

  23. M. Zaiser, M. Avlonitis, and E.C. Aifantis, “Stochastic and deterministic aspects of strain localization during cyclic plastic deformation”, Acta Mat., 46(12), 4143, 1998.

    Article  Google Scholar 

  24. A. El-Azab, “Statistical mechanics treatment of the evolution of dislocation distributions in single crystals”, Phys. Rev. B, 61, 11956–11966, 2000.

    Article  ADS  Google Scholar 

  25. N.M. Ghoniem, S.-H. Tong, and L.Z. Sun, “Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation”, Phys. Rev, 61(2), 913–927, 2000.

    Article  ADS  Google Scholar 

  26. R. de Wit, “The continuum theory of stationary dislocations”, In: F. Seitz and D. Turnbull (eds.), Sol. State Phys., 10, Academic Press, 1960.

    Google Scholar 

  27. N.M. Ghoniem, J. Huang, and Z. Wang, “Affine covariant-contravariant vector forms for the elastic field of parametric dislocations in isotropic crystals”, Phil. Mag. Lett., 82(2), 55–63, 2001.

    Article  ADS  Google Scholar 

  28. J. Hirth and J. Lothe, Theory of Dislocations, 2nd edn, McGraw-Hill, New York, 1982.

    Google Scholar 

  29. M.O. Peach and J.S. Koehler, “The forces exerted on dislocations and the stress fields produced by them”, Phys. Rev., 80, 436, 1950.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. N.M. Ghoniem and L.Z. Sun, “Fast sum method for the elastic field of 3-D dislocation ensembles”, Phys. Rev. B, 60(1), 128–140, 1999.

    Article  ADS  Google Scholar 

  31. S. Gavazza and D. Barnett, “The self-force on a planar dislocation loop in an anisotropic linear-elastic medium”, J. Mech. Phys. Solids, 24, 171–185, 1976.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. R.V. Kukta and L.B. Freund, “Three-dimensional numerical simulation of interacting dislocations in a strained epitaxial surface layer”, In: V. Bulatov, T. Diaz de la Rubia, R. Phillips, E. Kaxiras, and N. Ghoniem (eds.), Multiscale Modelling of Materials, Materials Research Society, Boston, Massachusetts, USA, 1998.

    Google Scholar 

  33. N.M. Ghoniem, “Curved parametric segments for the stress field of 3-D dislocation loops”, Transactions of ASME. J. Engrg. Mat. & Tech., 121(2), 136, 1999.

    Article  Google Scholar 

  34. X. Han, N.M. Ghoniem, and Z. Wang, “Parametric dislocation dynamics of anisotropic crystalline materials”, Phil. Mag. A., 83(31–34), 3705–3721, 2003.

    Google Scholar 

  35. T. Mura, “Continuous distribution of moving dislocations”, Phil. Mag., 8, 843–857, 1963.

    Article  ADS  Google Scholar 

  36. D. Barnett, “The precise evaluation of derivatives of the anisotropic elastic green’s functions”, Phys. Status Solidi (b), 49, 741–748, 1972.

    Article  ADS  Google Scholar 

  37. J. Willis, “The interaction of gas bubbles in an anisotropic elastic solid”, J. Mech. Phys. Solids, 23, 129–138, 1975.

    Article  ADS  Google Scholar 

  38. D. Bacon, D. Barnett, and R. Scattergodd, “Anisotropic continuum theory of lattice defects”, In: C.J.M.T.Chalmers, B (ed.), Progress in Materials Science, vol. 23, Pergamon Press, Great Britain, pp. 51–262, 1980.

    Google Scholar 

  39. T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, Dordrecht, 1987.

    Google Scholar 

  40. D. Barnett, “The singular nature of the self-stress field of a plane dislocation loop in an anisotropic elastic medium”, Phys. Status Solidi (a), 38, 637–646, 1976.

    Article  ADS  Google Scholar 

  41. X. Han and N.M. Ghoniem, “Stress field and interaction forces of dislocations in anisotropic multilayer thin films”, Phil. Mag., in press, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Ghoniem, N.M. (2005). Modeling the Dynamics of Dislocation Ensembles. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_117

Download citation

Publish with us

Policies and ethics