Skip to main content

P73, P63 and Mutant P53: Members of Protein Complexs Floating in Cancer Cells

  • Chapter
25 Years of p53 Research

Approximately half of human tumors bear p53 mutations (Hollestein et al., 1997). The most prevalent type consists of missense mutations that are frequently accompanied by loss of the remaining wild-type p53 (wt-p53) allele (Hainaut et al., 1997; Levine, 1997). The major site of the p53 mutations is the highly conserved DNA binding core domain (Hussain et al., 1998; Prives et al., 1999). Thus, mutant p53 (mt-p53) proteins are unable to specifically bind DNA and to activate specific wt-p53 target genes. Unlike wt-p53, whose half-life is short, mutant p53 proteins are quite stable and abundantly present in cancer cells. One certain outcome of p53 mutations is the loss of wild type activities such as growth arrest, apoptosis, and differentiation (Michalovitz et al., 1990; Yonish-Rouach et al., 1991; Soddu et al., 1996; Almog et al., 1997). However, at variance with other tumor suppressor genes, cells with p53 mutations maintain expression of the fulllength protein. This may suggest that, at least certain mutant forms of p53 can gain additional functions through which actively contribute to cancer progression (Prives et al., 1999; Sigal et al., 2000; Strano et al., 2001; Bullock et al., 2001). Such evidence is provided by several in vitro and in vivo studies (Haley et al., 1990; Dittmer et al., 1993; Gualberto et al., 1998; Frazier et al., 1998; Li et al., 1998; Blandino et al., 1999; Aas et al., 1996; Irwin et al., 2003; Strano et al., 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agami R., Blandino G., Oren M., and Shaul. Y Interaction of c-Abl and p73 and their collaboration to induce apoptosis. Nature 1999; 399: 809-13.

    Article  CAS  PubMed  Google Scholar 

  • Almog N., and Rotter V. Involvement of p53 in cell differentiation and development. Biochem. Biophys. Acta. 1997; 1333: F1-27.

    CAS  PubMed  Google Scholar 

  • Aas T., Borresen A. L., Geisler S., Smith-Sorensen B., Johnsen H., Varhaug J. E., Akslen L.A., and Lonning P. E. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat. Med. 1996; 2:811-4.

    Article  CAS  PubMed  Google Scholar 

  • Basu S., Totty N.F., Irwin M.S., Sudol M., Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell. 2003; 11:11-23.

    Article  CAS  PubMed  Google Scholar 

  • Blandino G., Levine A. J., and Oren M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 1999, 18: 477-85.

    Article  CAS  PubMed  Google Scholar 

  • Bensaad, K., Le Bras M., Unsal K., Strano S., Blandino G., Tominaga O., Rouillard D., and Soussi T. Change of conformation of the DNA binding domain of p53 is the only key element for binding of and interference with p73. J. Biol. Chem. 2003; 278:10546-10555.

    Article  CAS  PubMed  Google Scholar 

  • Bergamaschi D., Gasco M., Hiller L., Sullivan A., Syed N., Trigiante G., Yulug I., Merlano M., Numico G., Comino A., Attard M., Reelfs O., Gusterson B., Bell A.K., Heath V., Tavassoli M., Farrel P.J., Smith P., Lu X., and Crook T. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 2003; 3: 387-402.

    Article  CAS  PubMed  Google Scholar 

  • Bullock A.N., and Fersht A.R. Rescuing the function of mutant p53. Nat. Rev. Cancer 2001; 1: 68-76.

    Article  CAS  PubMed  Google Scholar 

  • Cho, Y. J., S. Gorina, P. D. Jeffrey, and N. P. Pavletich. Crystal structure of a p53 tumor suppressor DNA complex: understanding tumorigenic mutations. Science 1994; 265:346-355.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo A., Merlo P., Pediconi N., Fulco M., Sartorelli V., Cole P. A., Fontemaggi G., Fanciulli M., Schiltz, L., Blandino, G., Balsano C., and Levrero M. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell 2002; 9: 175-86.

    Article  CAS  PubMed  Google Scholar 

  • De Laurenzi V., Costanzo A., Barcaroli D., Terrinoni A., Falco, M., Annichiarico-Petruzzelli M., Levrero M., and Melino G. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J. Exp. Med. 1998; 188: 1763-68.

    Article  PubMed  Google Scholar 

  • De Laurenzi V., Raschellà G., Barcaroli D., Annichiarico-Petruzzelli, M., Ranalli, M., Catani M. V., Tanno B., Costanzo A., Levrero M., and Melino G. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J. Biol. Chem. 2000; 275: 15226-231.

    Article  PubMed  Google Scholar 

  • Di Como C. J., Gaiddon C., and Prives C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 1999; 19: 1438-49.

    PubMed  Google Scholar 

  • Dittmer D., Pati S., Zambetti G., Chu S., Teresky A. K., Moore M., Finlay C.,. and Levine A. J. Gain of function mutations in p53. Nat. Genet. 1993; 4:42-6.

    CAS  Google Scholar 

  • Flores E.R., Tsai K.Y., Crowley D., Sengupta S., Yang A., McKeon F., and Jacks T. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002; 416: 560-564.

    Article  CAS  PubMed  Google Scholar 

  • Fontemaggi G., Gurtner A., Strano S., Higashi Y., Sacchi A., Piaggio G., and Blandino G. The transcriptional repressor ZEB regulates p73 expression at the cross-road between proliferation and differentiation. Mol. Cell. Biol. 2001; 24: 8461-470.

    Article  Google Scholar 

  • Fontemaggi G., Kela I., Amariglio N., Rechavi G., Krishnamurthy J., Strano S., Sacchi A., Givol D., and Blandino G. Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J. Biol Chem. 2002; 277: 43359-368.

    Article  CAS  PubMed  Google Scholar 

  • Frazier M. W., He X., Wang J., Gu Z., Cleveland J. L., and Zambetti G. P. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol. Cell. Biol. 1998; 18: 3735-43.

    CAS  PubMed  Google Scholar 

  • Gaiddon C., Lokshin, M., Ahn, J., Zhang T., and Prives. C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 2001; 21: 1874-87.

    CAS  Google Scholar 

  • Gong J. G., Costanzo A., Yang, H. Q., Melino G., Kaelin W. G., Levrero M., and Wang, J. Y. J. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 39: 806-9.

    Google Scholar 

  • Gualberto A., Aldape K., Kozakiewicz K., and Tlsty, T. D. An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc. Natl. Acad. Sci. U S A 1998; 95: 5166-71.

    Article  CAS  PubMed  Google Scholar 

  • Hainaut P., Soussi T., Shomer B., Hollstein M., Greenblatt M., Hovig E., Harris C.C., and Montesano R. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 1997; 25: 151-7.

    Article  CAS  PubMed  Google Scholar 

  • Haley O., Michalovitz D., and Oren M. Different tumor-derived p53 mutants exhibit distinct biological activities. Science 1990; 250: 113-6.

    Article  Google Scholar 

  • Hollstein M., Soussi T., Thomas G., von Brevern M. C., and Bartsch H. p53 gene alterations in human tumors: perspectives for cancer control. Recent Results Cancer Res. 1997; 143: 369-89.

    CAS  PubMed  Google Scholar 

  • Hussain, S. P., and Harris C. C.. Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res. 1998; 58: 4023-37.

    CAS  PubMed  Google Scholar 

  • Jost C. A., Marin M. C., and Kaelin W. G.. p73 is a human p53 related protein that can induce apoptosis. Nature 1997; 389: 191-4.

    Article  CAS  PubMed  Google Scholar 

  • Irwin M., Kondo K., Marin M.C., Cheng L.S., Hahn W.C., and Kaelin W.G.jr. Chemosensitivity linked to p73 function. Cancer Cell 2003; 3: 403-10.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin W. G., Jr. The emerging p53 gene family. J. Natl. Cancer Inst. 1999; 91: 594-8.

    Article  CAS  PubMed  Google Scholar 

  • Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J.C., Valent A., Minty A., Chalon P., Lelias J.M., Dumont, X., Ferrara, P., McKeon F., and Caput D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809-19.

    Article  CAS  PubMed  Google Scholar 

  • Levine A. J. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323-31.

    Article  CAS  PubMed  Google Scholar 

  • Levrero M., De Laurenzi V., Costanzo A., Gong J., Wang J. Y., and Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J. Cell. Sci. 2000; 113: 1661-70.

    CAS  PubMed  Google Scholar 

  • Li R., Sutphin P. D., Schwartz D., Matas D., Almog, N., Wolkowicz R., Goldfinger N., Pei H., Prokocimer M., and Rotter. V. Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 1998; 16: 3269-77.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J., A. K. Teresky, and A. J. Levine. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 1995; 10: 2387-90.

    CAS  PubMed  Google Scholar 

  • Marin M. C., Jost C. A., Brooks L. A., Irwin M. S., O'Nions J., Tidy J. A., James, N., McGregor J. M., Harwood C. A.,. Yulug I. G., Vousden, K. H., Allday M. J., Gusterson B., Ikawa S., Hinds P. W., Crook T., and Kaelin W. G. Jr. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 2000; 25: 47-54.

    CAS  Google Scholar 

  • Matas D., Sigal A., Stambolsky P., Milyavsky M., Veisz L., Schwartz D., Goldfinger N., and Rotter V. Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J. 2001; 20: 4163-72.

    Article  CAS  PubMed  Google Scholar 

  • Michalovitz D., Halevy O., Oren M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive. Cell 1990; 62: 671-80.

    Article  CAS  PubMed  Google Scholar 

  • Mills A. A., Zheng B., Wang, X. J., Vogel H., Roop D. R., and Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708-13.

    Article  CAS  PubMed  Google Scholar 

  • Morena A.R., Riccioni S., Marchetti A., Tartaglia Polcini A., Mercurio A.M., Blandino G., Sacchi A., and Falcioni R. Expression of β4 integrin subunit induces monocytic differentiation of 32D/v-Abl cells. Blood 2002; 100: 96-106.

    Article  CAS  PubMed  Google Scholar 

  • Osada M., Ohba M., Kawahara C., Ishioka C., Kanamaru R., Katoh I., Ikawa Y., Nimura Y., Nakagawara A., Obinata, M., and Ikawa S. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat. Med. 1998; 4: 839-43.

    Article  CAS  PubMed  Google Scholar 

  • Prives C., and Hall P. A. The p53 pathway. J Pathol. 1999; 187: 112-26.

    Article  CAS  PubMed  Google Scholar 

  • Sigal A., and Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000; 60: 6788-93.

    CAS  PubMed  Google Scholar 

  • Soddu S., Blandino G., Scardigli R., Coen S., Marchetti A., Rizzo M.G., Bossi G., Cimino L., Crescenzi M., and Sacchi A. Interference with p53 protein inhibits hematopoietic and muscle differentiation. The Journal of Cell Biology 1996; 134: 193-204.

    Article  CAS  PubMed  Google Scholar 

  • Strano S., Munarriz E., Rossi, M., Cristofanelli B., Shaul Y., Castagnoli, L., Levine, A. J., Sacchi, A., Cesareni, G., Oren M. and Blandino. G. Physical and functional interaction between p53 mutants and different isoforms of p73. J. Biol. Chem. 2000; 275: 29503-12.

    Article  CAS  PubMed  Google Scholar 

  • Strano S., Fontemaggi G., Costanzo A., Rizzo M.G., Monti O., Baccarini A., Del Sal G., Levrero M., Sacchi A., Oren M. and Blandino G. Physical interaction with human tumor derived p53 mutants inhibits p63 activities. J. Biol Chem. 2002; 277: 18817-826.

    Article  CAS  PubMed  Google Scholar 

  • Strano S., Munarriz E., Rossi M., Cristofanelli B., Castagnoli L., Shaul Y., Sacchi A., Oren M., Sudol M., Cesareni G., and Blandino G. Physical interaction with Yes-associated protein (YAP) enhances p73 transcriptional activity. J. Biol. Chem. 2001; 276: 15164-173.

    Article  CAS  PubMed  Google Scholar 

  • Strano S., Rossi M., Fontemaggi, G., Munarriz, E., Soddu, S., Sacchi, A., and Blandino G. From p63 to p53 across p73. FEBS Lett. 2001; 490: 163-70.

    Article  CAS  PubMed  Google Scholar 

  • Strano S., and Blandino G. p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle. 2003; 2: 348-9.

    CAS  PubMed  Google Scholar 

  • Sudol M.. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 1994; 9: 2145-52.

    CAS  PubMed  Google Scholar 

  • Trink B., Okami K., Wu L., Sriuranpong V., Jen J., and Sidransky. D. A new human p53 homologue. Nat. Med. 1998; 4: 747-8.

    Article  PubMed  Google Scholar 

  • Yang, A., N. Walker, R. Bronson, M. Kaghad, M. Oosterwegel, J. Bonnin, C. Vagner, H. Bonnet, P. Dikkes, A. Sharpe, F. McKeon, and D. Caput. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404: 99-103.

    Article  CAS  PubMed  Google Scholar 

  • Yang A., and McKeon. F. p63 and p73: p53 mimics, menaces and more. Nat. Rev. Mol. Cell. Biol. 2000; 1: 199-207.

    Article  CAS  PubMed  Google Scholar 

  • Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R. T., Tabin C., Sharpe A., Caput D., Crum C., and McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714-8.

    Article  CAS  PubMed  Google Scholar 

  • Yang A., Kaghad M., Wang, Y., Gillett E., Fleming M. D., Dotsch V., Andrews N.C., Caput D., and McKeon. F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell. 1998; 2: 305-16.

    Article  PubMed  Google Scholar 

  • Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., and Oren M. Wild type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin6. Nature 1991, 352: 345-47.

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z. M., Shioya H., Ishiko T., Sun X., Gu J., Huang Y. Y., Lu H., Kharbanda S., Weichselbaum R., and Kufe. D. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature1999; 399: 814-17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Monti, O., Damalas, A., Strano, S., Blandino, G. (2007). P73, P63 and Mutant P53: Members of Protein Complexs Floating in Cancer Cells. In: Hainaut, P., Wiman, K.G. (eds) 25 Years of p53 Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2922-6_10

Download citation

Publish with us

Policies and ethics