Skip to main content

Regulatory Factors in Hormone Action: Level, Location and Signal Transduction

  • Chapter
Plant Hormones

Abstract

The way in which a plant hormone influences growth and development depends on: 1) The amount present: this is regulated by biosynthesis, degradation and conjugation. 2) The location of the hormone: this is affected by movement or transport. 3) The sensitivity (or responsiveness) of the tissue: this involves the presence of receptors and signal-transduction chain components. All of the above are active areas of current research that will be considered in this volume. Examples of each will be introduced below and some will be considered in more detail in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barratt NM, Davies PJ (1997) Developmental changes in the gibberellin-induced growth response in stem segments of light-grown pea genotypes. Plant Growth Regul 21: 127-134

    Article  CAS  Google Scholar 

  2. Baskin TI, Briggs WR, Iino M (1986) Can lateral redistribution of auxin account for phototropism of maize coleoptiles? Plant Physiol 81: 306-309

    Article  CAS  PubMed  Google Scholar 

  3. Beall FD, Morgan PW, Mander LN, Miller FR, Babb KH (1991) Genetic regulation of development of Sorghum bicolor. V. The ma- 3 allele results in gibberellin enrichment. Plant Physiol 95: 116-125

    Article  CAS  PubMed  Google Scholar 

  4. Davies PJ, Mitchell EK (1972) Transport of indoleacetic acid in intact roots of Phaseolus coccineus. Planta 105: 139-154

    Article  CAS  Google Scholar 

  5. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806-809

    PubMed  Google Scholar 

  6. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230

    Article  PubMed  Google Scholar 

  7. Geldner N, Friml J, Stierhof YD, Juergens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425-428

    Article  CAS  PubMed  Google Scholar 

  8. Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature London 413: 383-389

    Article  CAS  PubMed  Google Scholar 

  9. Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL (1984) Internode length in Pisum. The Le gene controls the 3-β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160: 455-463

    Article  CAS  Google Scholar 

  10. Law DM, Davies PJ (1990) Comparative indole-3-acetic acid levels in the slender pea and other pea phenotypes. Plant Physiol 93: 1539-1543

    Article  CAS  PubMed  Google Scholar 

  11. Leon P, Sheen J (2003) Sugar and hormone connections. Trends in Plant Science 8: 110-116

    Article  CAS  PubMed  Google Scholar 

  12. Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel's stem length gene (Le) encodes a gibberellin 3β-hydroxylase. Plant Cell 9: 1435-1443

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Wu YH, Hagen G, Guilfoyle T (1999) Expression of the auxin-inducible GH3 3 5 promoter/GUS fusion gene as a useful molecular marker for auxin physiology. Plant Cell Physiol 40: 675-682

    CAS  Google Scholar 

  14. McKay MJ, Ross JJ, Lawrence NL, Cramp RE, Beveridge CA, Reid JB (1994) Control of internode length in Pisum sativum: further evidence for the involvement of indole-3-acetic acid. Plant Physiol 106: 1521-1526

    CAS  PubMed  Google Scholar 

  15. Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1: 403-413

    Article  CAS  PubMed  Google Scholar 

  16. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science (Washington D C) 300: 332-336

    Article  CAS  Google Scholar 

  17. Müller A, Guan C, Gälweiler L, Taenzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17: 6903-6911

    Article  PubMed  Google Scholar 

  18. Nishijima T, Koshioka M, Yamazaki H (1993) A highly-sensitive rice seedling bioassay for the detection of femtomole quantities of 3-β-hydroxylated gibberellins. Plant Growth Regul 13: 241-247

    Article  CAS  Google Scholar 

  19. O'Neill DP, Ross JJ, Reid JB (2000) Changes in gibberellin A1 levels and response during de-etiolation of pea seedlings. Plant Physiol 124: 805-812

    Article  PubMed  Google Scholar 

  20. Parrish DJ, Davies PJ (1977) Emergent growth - an auxin-mediated response. Plant Physiol 59: 745-749

    Article  CAS  PubMed  Google Scholar 

  21. Reid JB (1988) Internode length in Pisum. Comparison of genotypes in the light and dark. Physiol Plant 74: 83-88

    Article  Google Scholar 

  22. Reid JB, Murfet IC, Potts WC (1983) Internode length in Pisum. II. Additional information on the relationship and action of loci Le La Cry Na and Lm. J Exp Bot 34: 349-364

    Article  Google Scholar 

  23. Reid JB, Potts WC (1986) Internode length in Pisum. Two further mutants, lh and ls, with reduced gibberellin synthesis, and a gibberellin insensitive mutant, lk. Physiol Plant 66: 417-426

    Article  CAS  Google Scholar 

  24. Ross JJ, Reid JB, Gaskin P, Macmillan J (1989) Internode length in Pisum. Estimation of GA1 levels in genotypes Le, le and led. Physiol Plant 76: 173-176

    Article  CAS  Google Scholar 

  25. Sandberg G, Gardestrom P, Sitbon F, Olsson O (1990) Presence of IAA in chloroplasts of Nicotiana tabacum and Pinus sylvestris. Planta 180: 562-568

    Article  CAS  Google Scholar 

  26. Scott TK, Briggs WR (1962) Recovery of native and applied auxin from the light grown Alaska pea seedlings. Amer J Bot 49: 1056-1083

    Article  CAS  Google Scholar 

  27. Spray C, Phinney BO, Gaskin P, Gilmour SI, Macmillan J (1984) Internode length in Zea mays L. The dwarf-1 mutant controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160: 464-468

    Article  CAS  Google Scholar 

  28. Vendrell M (1985) Dual effect of 2,4-D on ethylene production and ripening of tomato fruit tissue. Physiol Plant 64: 559-563

    Article  Google Scholar 

  29. Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44: 451-461

    Article  CAS  PubMed  Google Scholar 

  30. Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature (London) 425: 521-525

    Article  CAS  Google Scholar 

  31. Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110: 1029-1034

    CAS  PubMed  Google Scholar 

  32. Yang T, Law DM, Davies PJ (1993) Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings. Plant Physiol 102: 717-724

    CAS  PubMed  Google Scholar 

  33. Zeevaart JAD, Gage DA, Talon M (1993) Gibberellin A1 is required for stem elongation in spinach. Proc Natl Acad Sci USA 90: 7401-7405

    Article  CAS  PubMed  Google Scholar 

  34. Zhu Y-X, Davies PJ, Halinska A (1991) Metabolism of gibberellin A12 and A12-aldehyde in developing seeds of Pisum sativum L. Plant Physiol 97: 26-33

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Davies, P.J. (2010). Regulatory Factors in Hormone Action: Level, Location and Signal Transduction. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_2

Download citation

Publish with us

Policies and ethics