Skip to main content

Novel Approaches in Spectroscopy of Interparticle Inter-Actions. Vibrational Line Profiles and Anomalous Non-Coincidence Effects

  • Chapter
Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations

Part of the book series: NATO Science Series ((NAII,volume 133))

Abstract

This chapter deals with the theories of vibrational line profiles and anomalous (negative) frequency non–coincidence effects in condensed media. First, a novel approach to the line profile analysis is described. It is based on a new, flexible time–correlation function (TCF), which has an analytical counterpart in the frequency domain. Using this function one can fit vibrational line profiles obtaining dynamical information at the same time. Numerous applications of this TCF are considered, including analyses of both line profiles and dynamics. Second, direct methods of estimation of repulsion contributions to frrequency shifts and non–coincidence effects are described, and model calculations enabling one to separate the contributions of repulsion and attraction forces resulting in frrequency non–coincidences are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhshiev, N.G. (1972) Spectroscopy of Intermolecular Interactions, Nauka, Leningrad.

    Google Scholar 

  2. Rothschild, W.G. (1984) Dynamics of Molecular Liquids, Wiley, New York.

    Google Scholar 

  3. Wang, C.H. (1985) Spectroscopy of Condensed Media. Dynamics of Molecular Interactions, Academic, Orlando.

    Google Scholar 

  4. Burshtein, A.I. and Temkin, S.I. (1994) Spectroscopy of Molecular Rotation in Gases and Liquids, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  5. Gordon, R.G. (1968) Correlation functions for molecular motion, Adv. Magn. Res. 3, 1–42.

    Google Scholar 

  6. Oxtoby, D.W. (1979) Dephasing of molecular vibrations in liquids, Adv. Chem. Phys. 40, 1–48.

    Article  Google Scholar 

  7. Oxtoby, D.W. (1979) Vibrational relaxation in liquids, Annu. Rev. Chem. Phys. 32, 77–101.

    Article  ADS  Google Scholar 

  8. Ivanov, E.N. and Valiev, K.A. (1973) Rotational Brownian motion, Usp. Fiz. Nauk 109, 31–64.

    Article  Google Scholar 

  9. Keller, B. and Kneubühl, F. (1972) Experimental angular correlation functions of molecules in liquids and in crystals, Heiv. Phys. Acta, 45, 1127–1164.

    Google Scholar 

  10. Birnbaum, G., Guillot, B., and Bratos, S. (1982) Theory of collision–induced line shapes — Absorption and light scattering at low densities, Adv. Chem. Phys. 51, 49–112.

    Article  Google Scholar 

  11. Borysow, A. and Frommhold, L. (1989) Collision-induced light scattering: a bibliography, Adv. Chem. Phys. 75, 439–505.

    Article  Google Scholar 

  12. Collision– and Interaction–Induced Spectroscopy (1995) NATO ASI Series C: Mathematical and Physical Sciences, Vol 452, Tabisz, G.C. and Neuman, M.N. (eds.), Kluwer, Dodrecht.

    Google Scholar 

  13. Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C 76, 99–130; (1982)

    Article  Google Scholar 

  14. Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C ibid. 79, 157–197; (1987)

    Google Scholar 

  15. Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C ibid. 84, 155–199; (1990)

    Google Scholar 

  16. Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C ibid. 87, 75–118. (1990)

    Google Scholar 

  17. Faurskov Nielsen, O. (1993) Low-frrequency spectroscopic studies of interactions in liquids, Annu. Rep. Progr. Chem., Sect. C 90, 3–44.

    Article  Google Scholar 

  18. Faurskov Nielsen, O. (1996) Low-frrequency spectroscopic studies and intermolecular energy transfer in liquids Annu. Rep. Progr. Chem., Sect. C 93, 57–99.

    Article  Google Scholar 

  19. Kirillov, S.A. (1998) Interactions and picosecond dynamics in molten salts: a review with comparison to molecular liquids, J. Mol. Liq. 76, 35–95.

    Article  Google Scholar 

  20. Morresi, A., Paolantoni, M., and Sassi, P. (2000) The non-coincidence effect: a brief review of the structural and dynamical properties in liquid phase, Recent Res. Dev. Chem. Phys. 1, 67–87.

    Google Scholar 

  21. Bartoli, F.J. and Litovitz, T.A. (1972) Analysis of orientational broadening of Raman lines, J. Chem. Phys. 56, 404–412.

    Article  ADS  Google Scholar 

  22. Bartoli, F.J. and Litovitz, T.A. (1972) Raman scattering: Orientational motion in liquids, J. Chem. Phys. 56, 413–425.

    Article  ADS  Google Scholar 

  23. Boldeskul, A.E., Esman, S.S., and Pogorelov, V.E. (1974) Vibrational and rotational relaxation of molecules in several liquids on the basis of Raman spectra, Opt. Spectr. 37, 912–918.

    Google Scholar 

  24. Rothschild, W.G. (1976) Motional characteristics of large molecules from their Raman and infrared contours: vibrational dephasing, J. Chem. Phys. 65, 455–462.

    Article  ADS  Google Scholar 

  25. Kubo, R. (1962) A stochastic theory of line-shape and relaxation, In Fluctuations, Relaxation and Resonance in Magnetic Systems, Scottish Universities’ Summer School 1961, ter Haar, G. (ed.), Oliver and Boyd, Edinburgh, p. 23–68.

    Google Scholar 

  26. Constant, M. and Fauquembergue, R. (1973) Raman scattering. I. Vibrational correlation in methyl iodide, J. Chem. Phys. 58, 4030–4033.

    Article  ADS  Google Scholar 

  27. Tanabe, K. and Jonas, J. (1977) Raman study of vibrational relaxation in liquid benzene–d at high pressure, J. Chem. Phys. 67, 4222–4228.

    Article  ADS  Google Scholar 

  28. Ricci, M., Bartolini, P., Chelli, R., Gardini, G., Califano, S., and Righini, R. (2001) The fast dynamics of benzene in the liquid phase. Part 1. Optical Kerr effect experimental investigation, Phys. Chem. Chem. Phys. 3, 2795–2802.

    Article  Google Scholar 

  29. Seshadri K.S. and Jones, R.N (1963) The shapes and intensities of infrared absorption bands, Spectrochim. Acta 19, 1013–1085.

    Article  ADS  Google Scholar 

  30. Rothschild, W.G., Perrot, M., and Guillaume, F. (1986) Vibrational dephasing under fractional (“stretched”) exponential modulation, Chem. Phys. Lett. 128, 591–594.

    Article  ADS  Google Scholar 

  31. Rothschild, W.G., Perrot, M., and Guillaume, F. (1987) On the vibrational T2 processes in partially ordered systems, J. Chem. Phys. 87, 7293–7299.

    Article  ADS  Google Scholar 

  32. Kirillov, S.A. (1992) Fitting the stretched exponential model to experimental time correlation functions of vibrational dephasing, Chem. Phys. Lett. 200, 205–208.

    Article  ADS  Google Scholar 

  33. Burshtein, A.I. (1981) Motion-broadened and motionally narrowed spectra, Chem. Phys. Lett. 83, 335–340.

    Article  ADS  Google Scholar 

  34. Burshtein, A. I., Fedorenko, S. G., and Pusep, A. Yu. (1983) The lineshape of motion-averaged isotropic Raman spectra, Chem. Phys. Lett. 100, 155–158.

    Article  ADS  Google Scholar 

  35. Fedorenko, S.G., Pusep, A.Yu., and Burshtein, A.I. (1987) The transformation of inhomogeneously broadened spectra due to frequency migration, Spectrochim. Acta A 43, 483–488.

    Article  ADS  Google Scholar 

  36. Kirillov, S.A. and Kolomiyets, T.M. (1992) Repulsion forces in vibrational spectroscopy — II. Mutual effect of repulsion and attraction forces on the isotropic components of Raman line contours, with special reference to ionic systems, Spectrochim. Acta A 48, 867–871.

    Article  ADS  Google Scholar 

  37. Kirillov, S.A. (1993) Markovian frequency modulation in liquids. Analytical description and comparison with the stretched exponential approach, Chem. Phys. Lett. 202, 459–463.

    Article  ADS  Google Scholar 

  38. Kirillov, S.A. and Musiyenko, I.S. (1997) Estimation of the parameters of vibrational frequency modulation using generalized vibrational dephasing time correlation function, Khim. Fiz. (Russ.) 16, 30–34 [Chem. Phys. Reports 16, 1961–1966].

    Google Scholar 

  39. Kirillov, S.A. (1999) Time-correlation functions from band-shape fits without Fourier transform, Chem. Phys. Lett. 303, 37–42.

    Article  ADS  Google Scholar 

  40. Egelstaff, P.A. and Schofield, P. (1962) On the evaluation of the thermal neutron scattering law, Nucl. Sci. Eng. 12, 260–270.

    Google Scholar 

  41. Bunten, R.A.J., McGreevy, R.L., Mitchell, E.W.J., Raptis, C., and Walker, P.J. (1984) Collective modes in molten alkaline-earth chlorides: I. Light Scattering, J. Phys. C: Solid State Phys. 17, 4705–4724.

    Article  ADS  Google Scholar 

  42. Bunten, R.A.J., McGreevy, R.L., Mitchell, E.W.J., and Raptis, C. (1986) Collective modes in molten alkaline-earth bromides. Light Scattering, J. Phys. C: Solid State Phys. 19, 2925–2934.

    Article  ADS  Google Scholar 

  43. Schofield, P. (1962) Neutron scattering and correlations in liquids, In Fluctuations, Relaxation and Resonance in Magnetic Systems, Scottish Universities’ Summer School 1961, ter Haar, G. (ed.), Oliver and Boyd, Edinburgh, p. 207–217.

    Google Scholar 

  44. Tanabe, K. and Hiraishi J. (1980) Truncation effect on the second moment of vibrational band, Spectrochim. Acta A 36, 828–838.

    Google Scholar 

  45. Kirillov, S.A. (1999) Spatial disorder and low-frrequency Raman pattern of amorphous solid, with special reference to quasi-elastic scattering and its relation to Boson peak, J. Mol. Struct. 479, 279–284.

    Article  ADS  Google Scholar 

  46. Kirillov, S.A., Perova, T.S., Faurskov Nielsen, O., Praestgaard, E., Rasmussen, U., Kolomiyets, T.M., Voyiatzis, G.A., and Anastasiadis, S.H. (1999) Fitting the lowfrequency Raman spectra to Boson peak models: Glycerol, triacetin and polystyrene, J. Mol. Struct. 479, 271–277.

    Article  ADS  Google Scholar 

  47. Kirillov, S.A. and Kolomiyets, T.M. (2001) Disorder in polymer blends studied by low-frrequency Raman spectroscopy, J. Phys. Chem. B 105, 3168–3173.

    Article  Google Scholar 

  48. Kirillov, S.A. and Yannopoulos, S.N. (2000) Charge-current contribution to lowfrrequency Raman scattering from glass–forming ionic liquids, Phys. Rev. B 61, 11391–11399.

    Article  ADS  Google Scholar 

  49. Kirillov, S.A. and Faurskov Nielsen, O. (2000) Boson peak in the low-frrequency Raman spectra of ordinary liquids, J. Mol. Struct. 526, 317–321.

    Article  ADS  Google Scholar 

  50. Kirillov, S.A. (2002) Dephasing of the y1vibration of isotopic molecules of carbon tetrachloride, J. Raman Spectr. 33, 155–159.

    Article  ADS  Google Scholar 

  51. Kirillov, S.A., Voyiatzis, G.A., Musiyenko, I.S., Photiadis, G.M., and Pavlatou, E.A. (2001) Ionic interactions in molten halides from vibrational dephasing, J. Chem. Phys. 114, 3683–3691.

    Article  ADS  Google Scholar 

  52. Kirillov, S.A. (1995) Purely discrete Markovian frequency modulation in molten alkali perchlorates, J. Mol. Struct. 349, 21–25.

    Article  ADS  Google Scholar 

  53. Schroeder, J., Schiemann, V.H., Sharko, P.T., and Jonas, J. (1977) Raman study of vibrational dephasing in liquid CH3CN and CD3CN, J. Chem. Phys. 66, 3215–3226.

    Article  ADS  Google Scholar 

  54. Nikiel, L., Hopkins, B., and Zerda, T.W. (1990) Rotational and vibrational relaxation of small molecules in porous silica gels, J. Phys. Chem. 94, 7458–7464.

    Article  Google Scholar 

  55. Westlund, P.-O. and Lynden-Bell, R.M. (1989) Separation of vibrational dephasing and reorientational contributions to the infrared and Raman lineshapes in a simulation of McCN, Chem. Phys. Lett. 154, 67–70.

    Article  ADS  Google Scholar 

  56. Kirillov, S.A., Pavlatou, E.A., and Papatheodorou, G.N. (2002) Instantaneous collision complexes in molten alkali halides: Picosecond dynamics from low–frrequency Raman data, J. Chem. Phys. 116, 9341–9351.

    Article  ADS  Google Scholar 

  57. Kirillov, S.A. (2003) Vibrational spectra of fused salts and dynamic criterion of complex formation in ionic liquids, J. Mol. Struct. accepted.

    Google Scholar 

  58. Kirillov, S.A. and Yannopoulos, S.N. (2002) Vibrational dynamics as an indicator of short-time interactions in glass–forming liquids and their possible relation to cooperativity, J. Chem. Phys. 117, 1220–1230.

    Article  ADS  Google Scholar 

  59. Kalampounias, A.G., Kirillov, S.A., Steffen, W., and Yannopoulos, S.N. (2003) Raman spectra and microscopic dynamics of bulk and confined salol, J. Mol. Struct. accepted.

    Google Scholar 

  60. Kirillov, S.A., Voyiatzis, G.A., Andrikopoulos, K.S., and Yannopoulos, S.N. (2002) Interactions and picosecond dynamics in liquid benzene from Raman line profile analysis, in preparation.

    Google Scholar 

  61. Buchheim, W. (1935) Beeinflussung des Ramaneffektes von Flüssigkeiten durch zwischenmoleculare Wirkungen, Physik. Z. 36, 694–711.

    MATH  Google Scholar 

  62. Wolkenstein, M.V. (1937) Ramaneffect and intermolecular interactions, Usp. Fiz. Nauk 18, 153–202.

    Google Scholar 

  63. Frenkel, Ya.A., (1946) Kinetic Theory of Liquids, Oxford University Press, Oxford, Ch. VIII,§ 1.

    MATH  Google Scholar 

  64. Buckingham, A.D. (1958) Solvent effect in IR spectroscopy, Proc. Roy. Soc. A 248, 169–183.

    Article  ADS  Google Scholar 

  65. Buckingham, A.D. (1960) Solvent effect in vibrational spectroscopy, Trans. Faraday Soc. 56.753–760.

    Article  Google Scholar 

  66. Sechkarev, A.V. (1965) On the possible reason of line shift and broadening in vibrational spectra of polar organic substances without hydrogen bonding, Opt. Spektr. 19, 721–730.

    Google Scholar 

  67. Bratos, S., Rios, J., and Guissani, Y. (1970) Infrared study of liquids. I. The theory of the IR spectra of diatomic molecules in inert solutions, J. Chem. Phys. 52, 439–453.

    Article  ADS  Google Scholar 

  68. Perrot, M., Turrell, G., and Huong, P.V. (1970) Vibrational anharmonicity of HCl in solution, J. Mol. Spectr. 34, 47–52.

    Article  ADS  Google Scholar 

  69. Rossi, I., Brodbeck, C., Bouanich, J.P., and Nguyen vanThan (1975) Etude theorique du displacement de frequence des molecules diatomique en solution liquide. Application a la frequence fondamentale des molecules HF, HCl, DCl, HBr, HJ, CO et NO en solution CCl4, Spectrochim. Acta A 31, 433–444.

    Article  ADS  Google Scholar 

  70. Kolomiytsova, T.D., Melikova, S.M., and Shchepkin, D.N. (1975) Effect of intermolecular interactions on frequencies and anharmonicity constants, Opt. Spektr. 39, 602–604.

    Google Scholar 

  71. Martin, R., Quinard, J., Pahin, J.-P., and de Gasquet, B. (1978) Difusion Raman et Brillouin das nitrates monovalents (Li, Na, K, Rb, Cs, Tl, Ag), Rev. Chim. Minér. 15, 79–92.

    Google Scholar 

  72. Bulanin, M.O., Kolomiytsova, T.D., and Shchepkin, D.N. (1976) On the effect of intermolecular interactions on vibrational spectra of molecules, Opt. Spektr. 41, 201–213.

    Google Scholar 

  73. Kirillov, S.A. (1992) Repulsion forces in vibrational spectroscopy — I. Spectral shifts in vibrational spectra of condensed media caused by repulsion forces, Spectrochim. Acta A 48, 861–866.

    Article  ADS  Google Scholar 

  74. Fini, G., Mirone, P. and Fortunato, B. (1973) Evidence of shortrange orientation effects in dipolar aprotic liquids from vibrational spectroscopy. Part I. — Ethylene and propylene carbonates, J. Chem. Soc. Faraday Trans. 2 69, 1243–1248.

    Google Scholar 

  75. Davydov, A.S. (1962) Theory of Molecular Excitons, Dower, London.

    Google Scholar 

  76. Döge, G. Moleculare Schwingungsexcitonen in Flüssigkeiten, Z. Naturforsch. A 28, 919–932.

    Google Scholar 

  77. Korsunskii, V.I., Lavrik, N.L., and Naberukhin Yu.I. (1976) Different positions of isotropic and anisotropic components of Raman scattering in liquids as evidence of intermolecular vibrational coupling, Opt. Spektr. 41.794–798.

    Google Scholar 

  78. Wang, C.H. and McHale, J. (1980) Vibrational resonance coupling and the noncoincidence effect of the isotropic and anisotropic Raman spectral components in orientationally anisometric molecular liquids, J. Chem. Phys. 72.4039–4044

    Article  ADS  Google Scholar 

  79. McHale, J.L. (1981) The influence of angular dependent intermolecular forces on vibrational spectra of solution phase molecules, J. Chem. Phys. 75, 30–35.

    Article  ADS  Google Scholar 

  80. Logan, D.E., (1986) On the isotropic Raman spectra of isotopic binary mixtures, Mol. Phys. 58, 97–129.

    Article  ADS  Google Scholar 

  81. Logan, D.E., (1986) The non–coincidence effect in the Raman spectra of polar liquids, Chem. Phys. 103, 215–225.

    Article  ADS  Google Scholar 

  82. Zerda, T.W., Thomas, H.D., Bradley, M., and Jonas, J. (1987) Highpressure isotropic band widths and frequency shifts of the C-H and C-O modes of liquid methanol, J. Chem. Phys. 86, 3219–3224.

    Article  ADS  Google Scholar 

  83. Thomas, H.D. and Jonas, J. (1989) Hydrogen bonding and the Raman noncoincidence effect, J. Chem. Phys. 90, 4632–4633.

    Article  ADS  Google Scholar 

  84. Hobza, P. and Havlas, Z. (1999) The fluoroform...ethylene oxide complex exhibits a C–H...0 anti–hydrogen bond, Chem. Phys. Lett. 303, 447–452.

    Article  ADS  Google Scholar 

  85. Hermansson, K. (2002) Blueshifting hydrogen bonds, J. Phys. Chem. A 106, 4695–4702.

    Article  Google Scholar 

  86. Valiev, K.A. (1961) On the theory of dissipation of the energy of molecular vibrations energy in liquids, Zh. Eksp. Teor. Fiz. 40, 1832–1837.

    MathSciNet  Google Scholar 

  87. Tokuhiro, T. and Rothschild, W.G. (1975) Resonance vibrational energy transfer in the repulsive potential region, J. Chem. Phys. 62, 2150–2154.

    Article  ADS  Google Scholar 

  88. Oxtoby, D.W. (1979) Hydrodynamic theory of vibrational dephasing in liquids, J. Chem. Phys. 70, 2605–2610.

    Article  ADS  Google Scholar 

  89. Sarka, K. (1980) Contribution of interatomic repulsion forces to the broadening of vibrational bands of planar XY3 molecules, Chem. Zvesti 34, 721–725.

    Google Scholar 

  90. Sarka, K. and Kirillov, S.A. (1980) Line broadening in vibrational spectra of liquids caused by repulsion forces, Ukr. Fiz. Zhurn. 25, 93–99.

    Google Scholar 

  91. Harmon, J.F. and Müller, B.H. (1969) Nuclear spin relaxation by translational diffusion in liquid ethane, Phys. Rev. 182, 400–410.

    Article  ADS  Google Scholar 

  92. Brooker, M.H. and Papateodorou, G.N. (1983) Vibrational spectroscopy of molten salts and related glasses and vapors, Adv. Molten Salt Chem. 5, 26–184.

    Google Scholar 

  93. Lazarev, A.N., Mirgorodsky, A.P., and Ignatiev, I.S. (1985) Vibrational Spectra and Dynamics of Ionic–Covalent Crystals, Nauka, Leningrad.

    Google Scholar 

  94. Lazarev, A.N., Mirgorodsky, A.P., and Ignatiev, I.S. (1986) Vibrational spectra and dynamical properties of ionic-covalent crystals, Solid State Commun. 58, 371–377.

    Article  ADS  Google Scholar 

  95. Tsiashchenko, Yu.P, Krasnianskii, G.E., and Verlan, E.M. (1978) Intermolecular interactions and Davydov splitting in vibrational spectra of ionic–covalent crystals, Fiz. Tverd. Tela 20, 864–870.

    Google Scholar 

  96. Tsiashchenko, Yu.P and Krasnianskii, G.E. (1979) Contribution of shortrange interactions to the Davydov splitting of vibrational levels in Scheelitetype crystals, Opt. Spektr. 47, 911–916.

    Google Scholar 

  97. Kirillov, S.A. and Voronin, B.M. (1974) Activation energies of orientational relaxation and conductivity in some molten nitratechloride mixtures, Teor. Eksp. Khim. 10, 390–392.

    Google Scholar 

  98. Korniakova, I.D., Khokhlov, V.A., Khaimenov, A.P., and Kochedykov, V.A. (1993) Micro- and macrodynamics properties of carbonateion in molten LiClLi2CO3 system, Rasplavy, # 5, 35–41.

    Google Scholar 

  99. Kirillov, S.A. (1993) Repulsion forces in vibrational spectroscopy — III. Anomalous frequency noncoincidence effect in strongly interacting liquids, with special reference to molten salts, J. Raman Spectr. 24, 167–172.

    Article  ADS  Google Scholar 

  100. Meinander, N., Strube, M.M., Johnson, A.N., and Laane, J. (1987) Evidence for resonance intermolecular coupling in liquid benzene and pyridine from Raman difference spectroscopy of isotopic mixtures, J. Chem. Phys. 86, 4762–4767.

    Article  ADS  Google Scholar 

  101. Döge, G., Schneider, D., and Morresi, A. (1993) The negative non-coincidence effect of ring vibrations, Mol. Phys. 80, 525–531.

    Article  ADS  Google Scholar 

  102. Kamogawa, K. and Kitagawa, T. (1990) A new device for Raman difference spectroscopy and its application to observe frequency shifts due to isotope mixing, J. Phys. Chem. 94, 3916–3921.

    Article  Google Scholar 

  103. Morresi, A., Paolantoni, M., Sassi, P., Cataliotti, R.S., and Paliani, G. (2000) Noncoincidence effect of aromatic ring vibrations, J. Phys. Condens. Matter 12, 3631–3637.

    Article  ADS  Google Scholar 

  104. Kirillov, S.A. (2003) Separation of non–coincidences caused by attraction and repulsion in molecular liquids, in preparation.

    Google Scholar 

  105. Fernández-Sanchez, J.M. and Montero, S. (1989) Gas phase Raman scattering cross sections of benzene and perdeuterated benzene, J. Chem. Phys. 90, 2909–2914.

    Article  ADS  Google Scholar 

  106. Hatzis, G. and Samios, J. (2001) Estimation of the interaction-induced effects on the farinfrared and infrared correlation functions of HCl dissolved in CC14: a molecular dynamics study, J. Phys. Chem. A 105, 9522–9527.

    Article  Google Scholar 

  107. Medina, A., Roco, J.M.M., Calvo Hernández, A., and Velasco, S. (2003) Multipoleinduced dipole contributions to the FIR spectra of diatomic in non–polar solvents, this volume.

    Google Scholar 

  108. Torii, H. (2003) Intermolecular vibrational interaction and its manifestation in vibrational spectra, this volume.

    Google Scholar 

  109. Ribeiro, M.C.C., Wilson, M., and Madden, P. (1999) Raman scattering in the network liquid ZnCl2: relationship to the vibrational density of states, J. Chem. Phys. 110, 4803–4811.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kirillov, S.A. (2004). Novel Approaches in Spectroscopy of Interparticle Inter-Actions. Vibrational Line Profiles and Anomalous Non-Coincidence Effects. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics