Skip to main content

Using Supertrees to Investigate Species Richness in Grasses and Flowering Plants

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Matrix representation with parsimony is the most widely used method for supertree reconstruction, due mainly to its ability to deal with incompatible source trees, and its simple and logical mathematical basis. Supertrees have the advantage over consensus methods in that the source trees do not need to contain identical terminal taxa, but only overlap. This makes supertrees a useful and attractive approach to building comprehensive phylogenetic trees, which are indispensable tools for investigating macroevolutionary patterns. Here, we highlight the use of supertrees of two plant lineages. We used the genus-level supertree of grasses (containing almost two-thirds of grass genera) and a family-level supertree of the angiosperms to investigate the influence of various putative key innovations (habit, life form, sex, mode of pollination, mode of dispersal, water resistance, salt tolerance, and habitat preference) on species richness at two different taxonomic levels within the flowering plants. The results suggest that no significant increase in speciation rates could be linked to any of these features in the angiosperms, whereas life form had a significant impact on the number of species at the family level in the grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apg II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: Apg II. Botanical Journal of the Linnean Society 141:399–436.

    Google Scholar 

  • Archibold, O. I. V. 1995. Ecology of World Vegetation. Chapman and Hall, London.

    Book  Google Scholar 

  • Axelrod, D. I. 1952. A theory of angiosperm evolution. Evolution 6:29–60.

    Article  Google Scholar 

  • Barraclough, T. G., Nee, S., and Harvey, P. H. 1998. Sister-group analysis in identifying correlates of diversification. Comment. Evolutionary Ecology 12:751–754.

    Article  Google Scholar 

  • Barraclough, T. G. and Savolainen, V. 2001. Evolutionary rates and species diversity in flowering nlants. Evolution 55:677–683.

    Article  PubMed  CAS  Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 2004. The MRP method. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 17–34. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Bawa, K. S. 1994. Pollinators of tropical dioecious angiosperms: a reassessment? No, not yet. American Journal of Botany 81:456–460.

    Article  Google Scholar 

  • Bawa, K. S. and Opler, P. A. 1975. Dioecism in tropical forest trees. Evolution 29:167–179

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews 74:143–175.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems, and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Bousquet, J., Strauss, S. H., Doerksen, A. H., and Price, R. A. 1992. Extensive variation in evolutionary rate of rbcL gene-sequences among seed plants. Proceedings of the National Academy of Sciences of the United States ofAmerica 89:7844–7848.

    Article  CAS  Google Scholar 

  • Bramwell, D. 2002. How many plant species are there? Plant Talk 32:28.

    Google Scholar 

  • Bremer K., Chase M. W., Stevens P. F., Anderberg A. A., Backlund A., Bremer B., Briggs B. G., Endress P. K., Fay M. F., Goldblatt P., Gustafsson M. H. G., Hoot S. B., Judd W. S., Källersjö M., Kellogg E. A., Kron K. A., Les D. H., Morton C. M., Nickrent D. L., Olmstead R. G., Price R. A., Quinn C. J., Rodman J. E., Rudall P. J., Savolainen V., Soltis D. E., Soltis P. S., Sytsma K. J., and Thulin M. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanic Garden 85:531–553.

    Article  Google Scholar 

  • Burger, W. C. 1981. Why are there so many kinds of flowering plants. BioScience 31:572, 577–581.

    Google Scholar 

  • Chapman, G. P. 1996. The Biology of Grasses. Cab International, Wallingford England.

    Google Scholar 

  • Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michael, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedren, M., Gaut, B. S., Jansen, R. K., Kim, K. J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q. Y., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P.A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H., Graham, S. W., Barrett, S. C. H., Dayanandan, S., and Albert, V. A. 1993 Phylogenetics of seed plants: an analysis of nucleotide-sequence from the plastid gene rbcL.Annals of the Missouri Botanical Garden 80:528–580.

    Article  Google Scholar 

  • Christensen, K., De Collobiano, S. A., Hall, M., and Jensen, H. J. 2002. Tangled nature: a model of evolutionary ecology. Journal of Theoretical Biology.216:73–84.

    Article  PubMed  Google Scholar 

  • Clayton, W. D. and Renvoize, S. A. 1986. Genera Graminum, Grass Genera of the World. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Crane, P. R., Friis, E. M., and Pedersen, K. J. 1995. The origin and early diversification of angiosperms. Nature 374:27–33.

    Article  CAS  Google Scholar 

  • Crane, P. R. and Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in cretaceous floristic diversity. Science 246:675–246.

    Article  PubMed  CAS  Google Scholar 

  • Crepet, W. L. and Feldmann, G. D. 1991. The earliest remains of grasses in the fossil record. American Journal ofBotany 78:1010–1014.

    Article  Google Scholar 

  • Cunningham, S. A. 1995. Problems with null models in the study of phylogenetic radiation. Evolution 49:1292–1294.

    Article  Google Scholar 

  • Dacks, J. B. and Doolittle, W. F. 2001. Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107:419–425.

    Article  PubMed  CAS  Google Scholar 

  • Davies, T. J., Barraclough, T. G., Chase, M. W., Soltis, P. S., Soltis, D. E. and Savolainen, V. In press. Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences of the United States of America.

    Google Scholar 

  • Dennis, R. L. H., Shreeve, T. G., and Williams, W. R. 1995. Taxonomic differentiation in species richness gradients among European butterflies (Papilionoidea, Hesperioidea): contribution of macroevolutionary dynamics. Ecography 18:27–40.

    Article  Google Scholar 

  • Dodd, M. E., Silvertown, J., and Chase, M. W. 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–744.

    Article  Google Scholar 

  • Eriksson, O. and Bremer, B. 1992. Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46:258–266.

    Article  Google Scholar 

  • Farrell, B. D., Dussourd, D. E., and Mitter, C. 1991. Escalation of plant defense: do latex and resin canals spur plant diversification. American Naturalist 138:881–900.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:1–15.

    Article  Google Scholar 

  • Foley, R. 2002. Adaptive radiations and dispersals in hominid evolutionary ecology. Evolutionary Anthropology 11:32–37.

    Article  Google Scholar 

  • Fusco, G. and Cronk, Q. C. B. 1995. A new method for evaluating the shape of large phylogenies. Journal of Theoretical Biology 175: 235–243.

    Article  Google Scholar 

  • Gatesy, J., Matthee, C., Desa L L E, R., and Hayashi, C. 2002. Resolution of a supertree/supermatrix paradox. Systematic Biology 51:652–664.

    Article  PubMed  Google Scholar 

  • Gaut, B. S., Clark, L. G., Wendel, J. F., and Muse, S. V. 1997. Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). Molecular Biology and Evolution 14:769–777.

    Article  PubMed  CAS  Google Scholar 

  • Gaut, B. S., Morton, B. R., Mccaig, B. C., and Clegg, M. T. 1996. Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proceedings of the National Academy of Sciences of the United States ofAmerica 93:10274–10279.

    Article  CAS  Google Scholar 

  • Gaut, B. S., Muse, S. V., Clark, W. D., and Clegg, M. T. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. Journal of Molecular Evolution 35:292–303.

    Article  PubMed  CAS  Google Scholar 

  • Gittleman, J. L., Jones, K. E., and Price, S. A. 2004. Supertrees: using complete phylogenies in comparative biology. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 439–460. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Gittleman, J. L. and Purvis, A. 1998. Body size and species-richness in carnivores and primates. Proceedings of the Royal Society ofLondon B. 265:113–119.

    Article  CAS  Google Scholar 

  • Gorelick, R. 2001. Did insect pollination cause increased seed plant diversity? Biological Journal of the Linnean Society 74:407–427.

    Article  Google Scholar 

  • Goudet, J. 1999. An improved procedure for testing the effects of key innovations on rate of speciation. American Naturalist 153:549–555.

    Article  Google Scholar 

  • Govaerts, R. 2001. How many species of seed plants are there? Taxon 50:1085–1090.

    Article  Google Scholar 

  • Graybeal, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Halanych, K. M. and Passamaneck, Y. 2001. A brief review of metazoan phylogeny and future prospects in Hox-research. American Zoologist 41:629–639.

    Article  CAS  Google Scholar 

  • Heilbuth, J. C. 2000. Lower species richness in dioecious clades. American Naturalist 156:221–241.

    Article  Google Scholar 

  • Hillis, D. M. 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Systematic Biology 47:1–8.

    Article  Google Scholar 

  • Jan I S C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24:467–500.

    Article  Google Scholar 

  • Jeffery, J. E., Richardson, M. K., Coates, M. I., and Bininda-Emonds, O. R. P. 2002. Analyzing developmental sequences within a phylogenetic framework. Systematic Biology 51:478–491.

    Article  PubMed  Google Scholar 

  • Johnson, C. N. 1998. Species extinction and the relationship between distribution and abundance. Nature 394:272–274.

    Article  CAS  Google Scholar 

  • Källersjö, M., Farris, J. S., Chase, M. W., Bremer, B., Fay, M. F., Humphries, C. J., Petersen, G., Seberg, O., and Bremer, K. 1998. Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Systematics and Evolution 213:259–287.

    Article  Google Scholar 

  • Kellogg, E. A. 2000. The grasses: a case study in macroevolution. Annual Review of Ecology and Systematics 31:217–238.

    Article  Google Scholar 

  • Kirkpatrick, M. and Slatkin, M. 1993. Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution 47:1171–1181.

    Article  Google Scholar 

  • Koch, M. A., Weisshaar, B., Kroymann, J., Haubold, B., and Mitchell-Olds, T. 2001. Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Molecular Biology and Evolution 18:1882–1891.

    Article  PubMed  CAS  Google Scholar 

  • Larcher, W. 1995. Physiological Plant Ecology: Ecophysiology of Functional Groups. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Liner, H. P. 2000. Vicariance, climate change, anatomy and phylogeny of Restionaceae. Botanical Journal of the Linnean Society 134:159–177.

    Google Scholar 

  • Mabberley, D. 1993. The Plant-Book: a Portable Dictionary of the Vascular Plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Macfadden, B. J. 1998. Tale of two rhinos: isotopic ecology, paleodiet, and niche differentiation of Aphelops and Teleoceras from the Florida Neogene. Paleobiology 24:274–286.

    Google Scholar 

  • Manning, J. C. and Linder, H. P. 1992. Pollinators and evolution in Disperis (Orchidaceae), or why are there so many species. South African Journal of Science 88:38–49

    Google Scholar 

  • Marvaldi, A. E., Sequeira, A. S., O’Brien, C. W., and Farrell, B. D. 2002. Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): do niche shifts accompany diversification? Systematic Biology 51:761–785.

    Article  PubMed  Google Scholar 

  • Marzluff, J. M. and Dial, K. P. 1991. Life history correlates of taxonomic diversity. Ecology 72:428–439.

    Article  Google Scholar 

  • Maynard Smith, J. and Szathmary, E. 1995. The Major Transitions in Evolution. Freeman, Oxford.

    Google Scholar 

  • Midgely, J. J. and Bond, W. J. 1991. How important is biotic pollination and dispersal to the success of the angiosperms? Philosophical Transactions of the Royal Society of London B 333:209–215.

    Article  Google Scholar 

  • Mooers, A. O. and Harvey, P. H. 1994. Metabolic rate, generation time, and the rate of molecular evolution in birds. Molecular Phylogenetics and Evolution 3:344–350.

    Article  PubMed  CAS  Google Scholar 

  • Moore, B. R., Chan, K. M. A., and Donoghue, M. J. 2004. Detecting diversification rate variation in supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 487–533. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Nunn, C. L. and Barton, R. A. 2000. Allometric slopes and independent contrasts: a comparative test of Kleiber’s law in primate ranging patterns. American Naturalist 156:519–533.

    Article  Google Scholar 

  • Paradis, E. 1998. Detecting shifts in diversification rates without fossils. American Naturalist 152:176–188.

    Article  PubMed  CAS  Google Scholar 

  • Purvis, A. 1995. A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society ofLondon B 348:405–421.

    Article  CAS  Google Scholar 

  • Purvis, A. 1996. Using interspecies phylogenies to test macroevolutionary hypotheses. In P. H. Harvey, A. J. Leigh Brown, J. Maynard Smith, and S. Nee (eds), New Uses for New Phylogenies, pp.153–168. Oxford University Press, Oxford.

    Google Scholar 

  • Purvis, A., Katzourakis, A., and Agapow, P.-M. 2001. Evaluating phylogenetic tree shape: two modifications to Fusco and Cronk’s method. Journal of Theoretical Biology 214:99–103.

    Article  Google Scholar 

  • Purvis, A., Nee, S., and Harvey, P. H. 1995. Macroevolutionary inferences from primate phylogeny. Proceedings of the Royal Society of London B 260:329–333.

    Article  CAS  Google Scholar 

  • Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., Chen, Z., Savolainen, V., and Chase, M. W. 2000. Phylogeny of basal angiosperms: analysis of five genes from three genomes. International Journal of Plant Sciences 161:S3-S27.

    Article  CAS  Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Raven, P. H., Evert, R. H., and Eichhorn, S. E. 1992. Biology of Plants. Worth Publishers, New York.

    Google Scholar 

  • Ricklefs, R. E. and Renner, S. S. 1994. Species richness within families of flowering plants. Evolution 48:1619–1636.

    Article  Google Scholar 

  • Rieseberg, L. H. 1997. Hybrid origins of plant species. Annual Review of Ecology and Systematics 28:359–389.

    Article  Google Scholar 

  • Rosenheim, J. A. and Tabashnik, B. E. 1991. Influence of generation time on the rate of response to selection. American Naturalist 137:527–541.

    Article  Google Scholar 

  • Rosenzweig, M. L. 1992. Species diversity gradients: we know more and less than we thought. Journal of Mammalogy 73:715–730.

    Article  Google Scholar 

  • Salamin, N., Hodkinson, T. R., and Savolainen, V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology 51:136–150.

    Article  PubMed  Google Scholar 

  • Sanderson, M. J. and Donoghue, M. J. 1994. Shifts in diversification rate with the origin of angiosperms. Science 264:1590–1593.

    Article  PubMed  CAS  Google Scholar 

  • Savolainen, V., Heard, S. B., Powell, M., Davies, T. J., and Mooers, A. O. 2002. Is cladogenesis heritable? Systematic Biology 51:1–9.

    Article  Google Scholar 

  • Savolainen, V., Chase, M. W., Morton, C. M., Hoot, S. B., Soltis, D. E., Bayer, C., Fay, M. F., Debruijn, A., Sullivan, S., and Qiu, Y.-L. 2000. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49:306–362.

    Article  PubMed  CAS  Google Scholar 

  • Savolainen, V. and Goudet, J. 1998. Rate of gene sequence evolution and species diversification in flowering plants: a re-evaluation. Proceedings of the Royal Society of London B 265:603–607.

    Article  Google Scholar 

  • Schmid-Hempel, P. and Ebert, D. 2003. On the evolutionary ecology of specific immune defence. Trends in Ecology and Evolution 18:27–32.

    Article  Google Scholar 

  • Semple, C. and Steel, M. A. 2000. A supertree method for rooted trees. Discrete and Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Silvertown, J., Mcconway, K. J., Dodd, M. E., and Chase, M. W. 2000. “Flexibility” as a trait and methodological issues in species diversity variation among angiosperm families. Evolution 54:1066–1068.

    PubMed  CAS  Google Scholar 

  • Simpson, P. 2002. Evolution of development in closely related species of flies and worms. Nature Reviews Genetics 3:907–917.

    Article  PubMed  CAS  Google Scholar 

  • Slowinski, J. B. and Guyer, C. G. 1993. Testing whether certain traits have caused amplified diversification: an improved method based on a model of random speciation and extinction. American Naturalist 142:1019–1024.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. F. 2001. High species diversity in fleshy-fruited tropical understory plants. American Naturalist 157:646–653.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Albert, V. A., Oppenheimer, D. G., De Pamphilis, C. W., Ma, H., Frohlich, M. W., and Theissen, G. 2002. Missing links: the genetic architecture of flower and floral diversification. Trends in Plant Science 7:22–31.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M., Savolainen, V., Hahn, W. H., Hoot, S. B., Fay, M. F., Axtell, M., Swensen, S. M., Prince, L. M., Kress, W. J., Nixon, K. C., and Farris, J. S. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133:381–461.

    Google Scholar 

  • Soltis, D. E., Soltis, P. S., Mort, M. E., Chase, M. W., Savolainen, V., Hoot, S. B., and Morton, C. M. 1998. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Systematic Biology 47:32–42.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, P. S., Soltis, D. E., Wolf, P. G., Nickrent, D. L., Chaw, S., and Chapman, R. L. 1999. The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? Molecular Biology and Evolution 16:1774–1784.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L. 2002. Pa Up *. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Symonds, M. R. E. 2002. The effect of topological inaccuracy in evolutionary trees on the phylogenetic comparative method of independent contrasts. Systematic Biology 51:541–553.

    Article  PubMed  Google Scholar 

  • Watson, L. and Dallwitz, M. J. 1992. The Grass Genera of the World. Cab International, Wallingford, England.

    Google Scholar 

  • Wikström, N., Savolainen, V., and Chase, M. W. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society ofLondon B 268:2211–2220.

    Article  Google Scholar 

  • Wilkinson, M., Thorley, J. L., Littlewood, D. T. J., and Bray, R. A. 2001. Towards a phylogenetic supertree for the Platyhelminthes? In D. T. J. Littlewood and R. A. Bray (eds), Interrelationships of the Platyhelminthes, pp. 292–301. Chapman-Hall, London.

    Google Scholar 

  • Wilkinson, M., Thorley, J. L., Pisani, D., Lapointe, F.J., and Mcinerney, J. O. 2004. Some desiderata for liberal supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 227–246. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Willis, K. and Mcelwain, J. 2002. The Evolution of Plants. Oxford University Press, Oxford.

    Google Scholar 

  • Wing, S. L. and Boucher, L. D. 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences 26:379–421.

    Article  CAS  Google Scholar 

  • Zwickl, D. J. and Hillis, D. M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51:588–598.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Salamin, N., Davies, T.J. (2004). Using Supertrees to Investigate Species Richness in Grasses and Flowering Plants. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics