Skip to main content

A Critique of Matrix Representation with Parsimony Supertrees

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Strict and semi-strict supertree construction methods can be used to summarize groups that are consistent with all source phylogenies. Other procedures, such as Matrix Representation with Parsimony (MRP), arbitrate conflicts among incompatible source trees, and can provide more topological resolution than strict and semi-strict methods. MRP has been used to construct most of the large supertrees that have been published to date. We review some of the inherent problems with MRP and other supertree methods, point out specific difficulties in previously published Mrp-supertree analyses, question some of the possible advantages of supertrees, and suggest that supermatrix analyses of character data should provide the primary framework for comparative biology in the 21st century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, R. H. and Desalle, R. 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology 46:654–673.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, M., Donoghue, M. J., and Sober, E. 1991. Against consensus. Systematic Zoology 40:486–493.

    Article  Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. 2003. Novel versus unsupported clades: assessing the qualitative support for clades in MRP supertrees. Systematic Biology 52:839–848.

    PubMed  Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., and Sanderson, M. J. 2001. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Review 74:143–175.

    Article  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems, and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P., Jones, K. E., Price, S. A., Cardillo, M., Grenyer, R., and Purvis, A. 2004. Garbage in, garbage out: data issues in supertree construction. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 267–280. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Bookstein, F. L. 1994. Can biometrical shape be a homologous character? In B. Hall (ed.), Homology: The Hierarchical Basis of Comparative Biology, pp. 198–227, Academic Press, New York.

    Google Scholar 

  • Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295–304.

    Article  Google Scholar 

  • Bryant, H. N. 2004. The cladistics of matrix representation with parsimony analysis. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 353–368. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Burleigh, J. G., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2004. MRF supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 65–85. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Cotton, J. A. and Page, R. D. M. 2004. Tangled trees from molecular markers: reconciling conflict between phylogenies to build molecular supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 107–125. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Daubin, V., Gouy, M., and Perriere, G. 2001. Bacterial molecular phylogeny using supertree approach. Genome Informatics 12:155–164.

    PubMed  CAS  Google Scholar 

  • Farris, J. S. 1983. The logical basis of phylogenetic analysis. In N. Platnick and V. Funk (eds.), Advances in Cladistics, volume 2, pp. 7–36, Columbia University Press, New York.

    Google Scholar 

  • Farris, J. S., Källersjö, M., and Delaet, J. 2001. Branch lengths do not indicate support-even in maximum likelihood. Cladistics 17:298–299.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.

    Article  Google Scholar 

  • Gatesy, J., Milinkovitch, M. C., Waddell, V., and Stanhope, M. S. 1999. Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa. Systematic Biology 48:6–20.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J., Matthee, C., Desalle, R., and Hayashi, C. Y. 2002. Resolution of a supertree / supermatrix paradox. Systematic Biology 51:652–664.

    Article  PubMed  Google Scholar 

  • Gittleman, J. L. and Purvis, A. 1998. Body size and species richness in carnivores and primates. Philosophical Transactions of the Royal Society of London B 265:113–119.

    CAS  Google Scholar 

  • Goloboff, P. A., and Pol, D. 2002. Semi-strict supertrees. Cladistics 18:514–525.

    Google Scholar 

  • Hollar, L. J. and Springer M. S. 1997. Old World fruitbat phylogeny: evidence for convergent evolution and an endemic African clade. Proceedings of the National Academy of Sciences of the United State ofAmerica 94:5716–5721.

    Article  CAS  Google Scholar 

  • Hoofer, S. R. and Van Den Bussche, R. A. 2001. Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences. Journal of Mammalogy 82:131–137.

    Article  Google Scholar 

  • Hoover, A. 2001. A first: a (nearly) complete road map for the evolution of placental mammals. University ofFlorida News, March1.

    Google Scholar 

  • Jones, K. E., Purvis, A., Maclarnon, A., Bininda-Emonds, O. R. P., and Simmons, N. B. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Review 77:223–259.

    Google Scholar 

  • Källersjö, M., Farris, J. S., Chase, M. W., Bremer, B., Fay, M. F., Humphries, C. J., Peterson, G., Seberg, O., and Bremer, K. 1998. Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants, and flowering plants. Plant Systematics and Evolution 213:259–287.

    Article  Google Scholar 

  • Kennedy, M. and Page, R. D. M. 2002. Seabird supertrees: combining partial estimates of procellariiform phylogeny. The Auk 119:88–108.

    Google Scholar 

  • Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38:7–25.

    Article  Google Scholar 

  • Lapointe, F.-J. and Levasseur, C. 2004. Everything you always wanted to know about the average consensus, and more. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 87–105. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Lee, M. S. Y. and Hugall, A. F. 2003. Partitioned likelihood support and the evaluation of data set conflict. Systematic Biology 52:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46:523–536.

    Article  Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., Debry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., De Jong, W. W., and Springer, M. S. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614.

    Article  PubMed  CAS  Google Scholar 

  • Marks, J., Schmid, C. W., and Sarich V. M. 1988. DNA hybridization as a guide to phylogeny: relations of the Hominoidea. Journal of Human Evolution 17:769–786.

    Article  Google Scholar 

  • Miyamoto, M. M. 1985. Consensus cladograms and general classifications. Cladistics 1:186–189.

    Article  Google Scholar 

  • Miyamoto, M. M. and Fitch, W. M. 1995. Testing species phylogenies and phylogenetic methods with congruence. Systematic Biology 44:64–76.

    Google Scholar 

  • Murphy, W. J., Eizrik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A. and O’Brien, S. J. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618.

    Article  PubMed  CAS  Google Scholar 

  • Novacek, M. J. 1980. Phylogenetic analysis of the chiropteran auditory region. In D. Wilson and A. Gardner (eds), Proceedings of the Fifth International Bat Research Conference, pp. 317–330. Texas Tech. University, USA.

    Google Scholar 

  • Patterson, C. 1982. Morphological characters and homology. In A. Joysey and A. Friday (eds), Problems ofPhylogenetic Reconstruction, pp. 21–74. Academic Press, London.

    Google Scholar 

  • Piaggio-Talice, R., Burleigh, J. G., and Eulenstein, O. 2004. Quartet supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 173–191. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Pisani, D., Yates, A., Langer, M., and Benton, M. 2001. A genus-level supertree of the Dinosauria. Proceedings of the Royal Society of London Series B 269:915–921.

    Article  Google Scholar 

  • Pisani, D. and Wilkinson, M. 2002. Matrix representation with parsimony, taxonomic congruence, and total evidence. Systematic Biology 51:151–155.

    Article  PubMed  Google Scholar 

  • Purvis, A. 1995a. A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society ofLondon B 348:405–421.

    Article  CAS  Google Scholar 

  • Purvis, A. 1995b. A modification to Baum and Ragan ’s method for combining phylogenetic trees. Systematic Biology 44:251–255.

    Google Scholar 

  • Purvis, A., Nee, S., and Harvey, P. H. 1995. Macroevolutionary inferences from primate phylogeny. Proceedings of the Royal Society ofLondon B 260:329–333.

    Article  CAS  Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • De Queiroz, K. and Poe, S. 2001. Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper ’s writings on corroboration. Systematic Biology 50:305–321.

    Article  PubMed  Google Scholar 

  • Rodrigo, A. G. 1993. A comment on Baum ’s method for combining phylogenetic trees. Taxon 42:631–636.

    Article  Google Scholar 

  • Rodrigo, A. G. 1996. On combining cladograms. Taxon 45:267–274.

    Article  Google Scholar 

  • Ronquist, F. 1996. Matrix representation of trees, redundancy, and weighting. Systematic Biology 45:247–253.

    Article  Google Scholar 

  • Salamin, N., Hodkinson, T. R., and Savolainen, V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology 51:136–150.

    Article  PubMed  Google Scholar 

  • Sanderson, M. J., Purvis, A., and Henze, C. 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Sibley, C. G. and Ahlquist, J. E. 1990. Phylogeny and Classification of Birds: a Study in Molecular Evolution. Yale University Press, New Haven.

    Google Scholar 

  • Simmons, N. B. and Geisler, J. H. 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History 235:1–82.

    Google Scholar 

  • Slowinski, J. B. and Page, R. D. M. 1999. How should species phylogenies be inferred from sequence data? Systematic Biology 48:814–825.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, P. S., Soltis, D. E., and Chase, M. W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M. S. and De Jong, W. W. 2001. Phylogenetics. Which mammalian supertree to bark up? Science 291:1709–1711.

    Article  PubMed  CAS  Google Scholar 

  • Steel, M. A. 1992. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9:91–116.

    Article  Google Scholar 

  • Swiderski, D. L., Zelditch, M. L., and Fink, W. L. 1998. Why morphometrics is not special: coding quantitative data for phylogenetic analysis. Systematic Biology 47:508–519.

    PubMed  CAS  Google Scholar 

  • Swofford, D. L. 1998. Pa Up *. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192.

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bussche, R. A. and Hoofer, S. R. 2001. Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. Journal of Mammalogy 82:320–327.

    Article  Google Scholar 

  • Van De Peer, Y. and De Wachter, R. 1997. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. Journal of Molecular Evolution 45:619–630.

    Article  PubMed  Google Scholar 

  • Wilkinson, M., Thorley, J. L., Littlewood, D. T. J., and Bray, R. A. 2001. Towards a phylogenetic supertree of Platyhelminthes? In D. Littlewood and R. Bray (eds), Interrelationships of the Platyhelminthes, pp. 292–301. Chapman-Hall, London.

    Google Scholar 

  • Wilkinson, M., Lapointe, F.-J., and Gower, D. J. 2003. Branch lengths and support Systematic Biology 52:127–130.

    Article  PubMed  Google Scholar 

  • Wojciechowski, M. F., Sanderson, M. J., Steel, K. P., and Liston, A. 2000. Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. In P. Herendeen and A. Bruneau (eds), Advances in Legume Systematics 9:277–298. Royal Botanic Garden, Kew.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gatesy, J., Springer, M.S. (2004). A Critique of Matrix Representation with Parsimony Supertrees. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics