Skip to main content

Abstract

No topic in the area of dialysis has received more attention in the past two decades than that of adequacy. Adequacy of dialysis has become synonymous with the measurement of delivered small solute clearances and monitoring of their correlation with subsequent patient outcomes. Of course, ‘adequate dialysis’ should also involve consideration of other parameters that can be influenced by the dialysis prescription. These, among others, include volume status and blood pressure control, nutrition, correction of anemia, and divalent ion metabolism. However, for the purposes of this chapter, the narrow and more conventional definition of adequacy will be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jebsen RH, Tenckhoff H, Honet JC. Natural history of uremic polyneuropathy and effects of dialysis. N Engl J Med. 1967;277:327–33.

    PubMed  CAS  Google Scholar 

  2. Stewart JH, Castaldi PA. Uraemic bleeding: a reversible platelet defect corrected by dialysis. Q J Med. 1967;36:409–23.

    PubMed  CAS  Google Scholar 

  3. Kiley JE, Dorsey T, Rasmussen R, Lapp D. Electronic EEG frequency analysis for evaluation of uremia. Proc 7th Annual Contractors Conference. DHEW Publication No. (NIH), 1974;75–248:28–9.

    Google Scholar 

  4. Henderson LW. Middle molecules re-examined. Nephron. 1978;22:146–52.

    PubMed  CAS  Google Scholar 

  5. Merrill JP, Legrain M, Hoigne R. Observations on the role of urea in uremia. Ann Intern Med. 1953;14:519–24.

    Google Scholar 

  6. Johnson WJ, Hagge WW, Wagoner RD, Dinapoli RP, Rosevear JW. Effects of urea loading in patients with far advanced renal failure. Mayo Clin Proc. 1972;47:21–9.

    PubMed  CAS  Google Scholar 

  7. Scribner BH, Farrell PC, Milutinovic J, Babb AL. Evolution of the middle molecule hypothesis. Prov 5th Int Cong Nephrol. 1972;3:190–9.

    Google Scholar 

  8. Babb AL, Popovich RP, Christopher TG, Scribner BH. The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Int Organs. 1971;17:81–91.

    CAS  Google Scholar 

  9. Christopher TG, Cambi V, Harker LA et al. A study of hemodialysis with lowered dialysate flow rate. Trans Am Soc Artif Int Organs. 1971;17:92–5.

    Google Scholar 

  10. Babb AL, Strand MJ, Uvelli DA, Milutinovic J, Scribner BH. Quantitative description of dialysis treatment: a dialysis index. Kidney Int. 1975;7:S23–9.

    Google Scholar 

  11. Teehan BP, Gacek EM, Heymach GJ et al. A clinical appraisal of the dialysis index. Trans Am Soc Artif Int Organs. 1977;23:548–55.

    CAS  Google Scholar 

  12. Lowrie EG, Laird NM, Parker TF, Sargent JA. Effect of the hemodialysis prescription on patient morbidity. N Engl J Med. 1981;305:1176–81.

    PubMed  CAS  Google Scholar 

  13. Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 1985;28:526–34.

    PubMed  CAS  Google Scholar 

  14. Parker TF. Trends and concepts in the prescription and delivery of hemodialysis in the United States. Semin Nephrol. 1992;12:367–75.

    Google Scholar 

  15. Dumler F, Stalla K, Mohini R, Zasuwa G, Levin NW. Clinical experience with short time hemodialysis. Am J Kidney Dis. 1992;19:49–56.

    PubMed  CAS  Google Scholar 

  16. Daugirdas JT. The postpre-dialysis plasma urea nitrogen ratio to estimate Kt/V and nPCR: mathematical modeling. Int J Artif Organs. 1989;12:411–19.

    PubMed  CAS  Google Scholar 

  17. Garred LJ, Barichello DL, DiGiuseppe B, McCready WG, Canaud BC. Simple Kt/V formulas based on urea mass balance theory. J Am Soc Artif Intern Organs. 1994;40:997–1004.

    CAS  Google Scholar 

  18. Daugirdas JT. The post:pre-dialysis plasma urea nitrogen ratio to estimate Kt/V and nPCR: validation. Int J Artif Organs. 1989;12:420–7.

    PubMed  CAS  Google Scholar 

  19. Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.

    PubMed  CAS  Google Scholar 

  20. Lowrie EG, Lew NL. The urea reduction ratio (URR): a simple method for evaluating hemodialysis treatment. Contemp Dial Nephrol. 1991;12:11–20.

    Google Scholar 

  21. Jindal KK, Manuel A, Goldstein MB. Percent reduction in blood urea concentration during hemodialysis (PRU): a simple and accurate method to estimate Kt/V urea. Trans Am Soc Artif Int Organs. 1987;33:286–8.

    CAS  Google Scholar 

  22. Owen Jr WF, Lew NL, Liu Y, Lowrie EG, Lazurus JM. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med. 1993;329:1001–6.

    PubMed  Google Scholar 

  23. Hull AR, Parker TF, editors. Proceedings from the Morbidity and Mortality and Prescription of Dialysis Symposium, Dallas, Texas, 15 to 17 September, 1989. Am J Kidney Dis. 1990;15:375–515.

    Google Scholar 

  24. Kopple JD, Hakim RH, Held PJ et al. Recommendations for reducing the high mortality and morbidity of United States maintenance dialysis patients. Am J Kidney Dis. 1994; 24:968–73.

    PubMed  CAS  Google Scholar 

  25. Executive Summary. Renal Physicians Association practice guideline on adequacy of hemodialysis. In: End-Sate Renal Disease Data Advisory Committee: 1993 Annual Report. Washington: US Department of Health and Human Services, 1994:35–9.

    Google Scholar 

  26. Wolfe RA, Held PJ, Hulbert-Shearon TE, Agodoa LYC, Port FK. A critical examination of trends in outcome over the last decade. Am J Kidney Dis. 1998;32(Suppl. 4):S9–15.

    PubMed  CAS  Google Scholar 

  27. Eknoyan G, Beck GJ, Cheung AK et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347:2010–19.

    PubMed  Google Scholar 

  28. Blake PG. Adequacy of dialysis revisited. Kidney Int. 2003; 63:1587–99.

    PubMed  Google Scholar 

  29. National Kidney Foundation. NKF-DOQI Clinical practice guidelines for hemodialysis adequacy. Am J Kidney Dis. 1997;30(Suppl. 2):S15–66.

    Google Scholar 

  30. National Kidney Foundation. K-DOQI Clinical practice guidelines for hemodialysis adequacy: update 2000. Am J Kidney Dis. 2001;37(Suppl. 1):S 7–64.

    Google Scholar 

  31. Pedrini LA, Zereik S, Rasmy S. Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int. 1988:34:817–24.

    PubMed  CAS  Google Scholar 

  32. Alloatti S, Molino A, Manes M, Bosticardo GM. Urea rebound and effectively delivered dialysis dose. Nephrol Dial Transplant. 1998;13(Suppl. 6):25–30.

    PubMed  CAS  Google Scholar 

  33. Sherman RA. Recirculation revisited. Semin Dial. 1991;4: 221–3.

    Google Scholar 

  34. Schneditz D, Kaufman AM, Polaschegg HD, Levin NW, Daugirdas JT. Cardiopulmonary recirculation during hemodialysis. Kidney Int. 1992;42:1450–6.

    PubMed  CAS  Google Scholar 

  35. Depner TA, Rizwan S, Cheer AY, Wagner JM, Eder LA. High venous urea concentrations in the opposite arm: a consequence of hemodialysis-induced disequilibrium. Trans Am Soc Artif Intern Organs. 1991;37:M141–3.

    CAS  Google Scholar 

  36. Schneditz D, Vam Stone JC, Daugirdas JT. A regional blood circulation alternative to in-series two compartment urea kinetic modeling. ASAIO J. 1993;39:M573–7.

    PubMed  CAS  Google Scholar 

  37. Daugirdas JT, Schneditz D. Overestimation of hemodialysis dose depends on dialysis efficiency by regional blood flow but not by conventional two pool urea kinetic analysis. J Am Soc Artif Intern Organs. 1995;41:M719–24.

    CAS  Google Scholar 

  38. Gotch FA. Kinetic modeling in hemodialysis. In: Nissenson AR, Fine RN, Gentile DE, editors. Clinical Dialysis 3rd edn. Englewood Cliffs, NJ: Prentice Hall, 1995.

    Google Scholar 

  39. Lysaght MJ, Pollock CA, Hallet MD, Ibels LS, Farrel PC. The relevance of urea kinetic modeling to CAPD. Trans Am Soc Artif Intern Organs. 1989;35:784–90.

    CAS  Google Scholar 

  40. Charra B, Depner TA, Vanholder R et al. Is Kt/V urea a satisfactory measure for dosing the newer dialysis regimens? Semin Dial. 2001;14:8–21.

    Google Scholar 

  41. Keshaviah P, Star RA. A new approach to dialysis quantification: an adequacy index based on solute removal. Semin Dial. 1994;7:85–90.

    Google Scholar 

  42. Keshaviah P. The solute removal index: a unified basis for comparing disparate therapies. Perit Dial Int. 1995;15: 101–4.

    PubMed  CAS  Google Scholar 

  43. Casino FG, Lopez T. The equivalent renal urea clearance: a new parameter to assess dialysis dose. Nephrol Dial Transplant. 1996;11:1574–81.

    PubMed  CAS  Google Scholar 

  44. Gotch FA. The current place of urea kinetic modeling with respect to different dialysis modalities. Nephrol Dial Transplant. 1998;13(Suppl. 6):10–14.

    PubMed  CAS  Google Scholar 

  45. Barth RH. Urea modeling and Kt/V: a critical appraisal. Kidney Int. 1993;41(Suppl. 2):S252–60.

    CAS  Google Scholar 

  46. Lowrie EG, Zhu X, Lew NL. Primary associates of mortality among dialysis patients: trends and reassessment of Kt/V and urea reduction ratio as outcome-based measures of dialysis dose. Am J Kidney Dis. 1998;32(Suppl. 4): S16–31.

    PubMed  CAS  Google Scholar 

  47. Szczech LA, Reddan DN, Lowrie EG, Owen WF. Dose of hemodialysis and survival: can we trust important outcomes to a flawed measure? Int J Artif Organs. 2000;23:411–14.

    PubMed  CAS  Google Scholar 

  48. Lowrie EG, Chertow GM, Lew NL, Lazarus M, Owen WF. The urea {clearance x dialysis timez product (Kt) as an outcome-based measure of hemodialysis dose. Kidney Int. 1999;56:729–37.

    PubMed  CAS  Google Scholar 

  49. United States Renal Data System. Excerpts from the USRDS 2001 annual data report: atlas of end-stage renal disease in the United States. Am J Kidney Dis. 2001; 38(Suppl. 3):S138–9.

    Google Scholar 

  50. Foley RN, Parfrey PS, Sarrak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998;9(Suppl. 12):516–23.

    Google Scholar 

  51. Mailloux L. Hypertension in the dialysis patient. Am J Kidney Dis. 1999;34:359–61.

    PubMed  CAS  Google Scholar 

  52. Charra B, Calemard E, Ruffet M et al. Survival as an index of adequacy of dialysis. Kidney Int. 1992;41:1286–91.

    PubMed  CAS  Google Scholar 

  53. Innes A, Charra B, Burden RP, Morgan AG, Laurent G. The effect of long, slow haemodialysis on patient survival. Nephrol Dial Transplant. 1999;14:919–22.

    PubMed  CAS  Google Scholar 

  54. Pierratos A. Nocturnal home haemodialysis: an update on a 5-year experience. Nephrol Dial Transplant. 1999;14: 2835–40.

    PubMed  CAS  Google Scholar 

  55. Lindsay RM. The London, Ontario Daily/Nocturnal Hemodialysis Study. Semin Dial. 2004;17:85–91.

    PubMed  Google Scholar 

  56. Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis. 2001;38:85–90.

    PubMed  CAS  Google Scholar 

  57. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephol. 2001;12:2158–62.

    CAS  Google Scholar 

  58. Garred LJ. Dialysate-kinetic modeling. Adv Ren Replace Ther. 1995;2:305–18.

    PubMed  CAS  Google Scholar 

  59. Sargent JA. Control of dialysis by a single-pool urea model: the national cooperative dialysis study. Kidney Int. 1983;23(Suppl. 13):S19–25.

    Google Scholar 

  60. Lowrie EG, Laird NM, Henry RR. Protocol for the national cooperative dialysis study. Kidney Int. 1983;23(Suppl. 13): S11–18.

    Google Scholar 

  61. Parker TF, Laird NM, Lowrie EG. Comparison of the study groups in the National Cooperative Dialysis Study and a description of morbidity, mortality, and patient withdrawal. Kidney Int. 1983;23(Suppl. 13):S42–9.

    Google Scholar 

  62. Harter HR. Review of significant findings from the national cooperative dialysis study and recommendations. Kidney Int. 1983;23(Suppl. 13):S107–12.

    Google Scholar 

  63. Schoenfeld PY, Henry RA, Laird NM, Roxe DM. Assessment of nutritional status of the national cooperative dialysis study population. Kidney Int. 1998;23(Suppl. 13):S80–8.

    Google Scholar 

  64. Lowrie EG, Teehan BP. Principles of prescribing dialysis therapy: implementing recommendations from the national cooperative dialysis study. Kidney Int. 1983;23(Suppl. 13): S113–22.

    Google Scholar 

  65. Goldstein MB, Deziel C, Hirsch DJ et al. Canadian clinical practice guidelines for the delivery of hemodialysis. J Am Soc Nephrol. 1999;10:S287–321.

    Google Scholar 

  66. Depner TA, Cheer A. Modeling urea kinetics with two vs. three BUN measurements: a critical comparison. Trans Am Soc Artif Intern Organs. 1989;35:499–502.

    CAS  Google Scholar 

  67. Buur T. Two-sample hemodialysis urea kinetic modelling: validation of the method. Nephron. 1995;69:49–53.

    PubMed  CAS  Google Scholar 

  68. Borah MF, Schoenfeld PY, Gotch FA, Sargent FA, Wolfson M, Humphreys MH. Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int. 1978;14:491–500.

    PubMed  CAS  Google Scholar 

  69. Daugirdas JT, Depner TE. A nomogram approach to hemodialysis urea modelling. Am J Kidney Dis. 1994;23:33–40.

    PubMed  CAS  Google Scholar 

  70. Watson RW, Watson ID, Butt RD. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr. 1980;33: 27–39.

    PubMed  CAS  Google Scholar 

  71. Hume R, Weyers E. Relationship between total body water and surface area in normal and obsese subjects. J Clin Pathol. 1971;24:234–8.

    PubMed  CAS  Google Scholar 

  72. Chertow GM, Lowrie EG, Lew NL, Lazurus JM. Development of a population-specific regression equation to estimate total body water in hemodialysis patients. Kidney Int. 1997;51:1578–82.

    PubMed  CAS  Google Scholar 

  73. Coyne DW, Delmez J, Spence G, Windus DW. Impaired delivery of hemodialysis prescriptions: an analysis of causes and an approach to evaluation. J Am Soc Nephrol. 1997;8:1315–18.

    PubMed  CAS  Google Scholar 

  74. Zehnder C, Blumberg A. Influence of dialyzer clearance measurement accuracy on hemodialysis prescription based on Kt/V, Nephrol Dial Transplant. 1994;9:753–7.

    PubMed  CAS  Google Scholar 

  75. Daugirdas JT. Simplified equations for monitoring Kt/V, PCRn, eKt/V, and ePCRn. Adv Renal Repl Ther. 1995:2:295–304.

    CAS  Google Scholar 

  76. Depner TA, Daugirdas JT. Equations for normalized PCR based on two point modelling of hemodialysis urea kinetics. J Am Soc Nephrol. 1996;7:780–5.

    PubMed  CAS  Google Scholar 

  77. Beto JA, Bensal VK, Ing TS, Daugirdas JT. Variation in blood sample collection for determination of hemodialysis adequacy. Am J Kidney Dis. 1998;31:135–41.

    PubMed  CAS  Google Scholar 

  78. Hester RL, Curry E, Bower J. The determination of hemodialysis blood recirculation using blood urea nitrogen measurements. Am J Kidney Dis. 1992;20:598–602.

    PubMed  CAS  Google Scholar 

  79. Basile C, Casino F, Lopez T. Percent reduction in blood urea concentration during dialysis estimates Kt/V in a simple and accurate way. Am J Kidney Dis. 1990;15:40–5.

    PubMed  CAS  Google Scholar 

  80. Keshaviah P. Urea kinetic and middle molecule approaches to assessing the adequacy of hemodialysis and CAPD. Kidney Int. 1993;43(Suppl. 40):S28–38.

    Google Scholar 

  81. Held PJ, Brunner FB, Odaka M, Garcia JR, Port FK, Gaylin DS. Five-year survival for end-stage renal disease patients in the United States, Europe, and Japan, 1982–1987. Am J Kidney Dis. 1990;15:451–7.

    PubMed  CAS  Google Scholar 

  82. Held PJ, Port FK, Wolfe RA et al. The dose of hemodialysis and patient mortality. Kidney Int. 1996;50:550–6.

    PubMed  CAS  Google Scholar 

  83. Bloembergen WE, Stannard DC, Port FK et al. Relationship of dose of hemodialysis and cause-specific mortality. Kidney Int. 1996;50:557–65.

    PubMed  CAS  Google Scholar 

  84. Teraoka S, Toma H, Nihei H et al. Current status of renal replacement therapy in Japan. Am J Kidney Dis. 1995; 25:151–64.

    PubMed  CAS  Google Scholar 

  85. Collins A, Umen A, Ma JZ, Keshaviah P. Urea index and other predictors of hemodialysis patient survival. Am J Kidney Dis. 1994;23:272–82.

    PubMed  CAS  Google Scholar 

  86. Owen WF, Chertow GM, Lazurus JM, Lowrie EG. The dose of hemodialysis: mortality responses by race and gender. J Am Med Assoc. 1998:280:1–6.

    Google Scholar 

  87. Hakim RM, Breyer J, Ismail N, Schulman G. Effect of dose of dialysis on mortality and morbidity. Am J Kidney Dis. 1994;23:661–9.

    PubMed  CAS  Google Scholar 

  88. Parker TF III, Husni L, Huang W, Lew N, Lowrie EG. Survival of hemodialysis patients in the United States is improved with a greater quantity of dialysis. Am J Kidney Dis. 1994;23:670–80.

    PubMed  Google Scholar 

  89. Szczech LA, Lowrie EG, Li Z, Lazurus JM, Lew NL, Owen WF. Changing hemodialysis thresholds for optimal survival. Kidney Int. 2001;59:738–45.

    PubMed  CAS  Google Scholar 

  90. Gotch FA, Levin NW, Port FK, Wolfe RA, Uehlinger DE. Clinical outcome relative to the dose of dialysis is not what you think: The fallacy of the mean. Am J Kidney Dis. 1997;30:1–15.

    PubMed  CAS  Google Scholar 

  91. Chertow GM, Owen WF, Lazarus JM, Lew SM, Lowrie EG. Exploring the reverse J-shaped curve between urea reduction ratio and mortality. Kidney Int. 1999;56:1872–8.

    PubMed  CAS  Google Scholar 

  92. Frankenfield DL, McClellan WM, Helgerson SD, Lowrie EG, Rocco MV, Owen WF. Relationship between urea reduction ratio, demographic characteristics, and body weight for patients in the 1996 national ESRD core indicators project. Am J Kidney Dis. 1999;33:584–91.

    PubMed  CAS  Google Scholar 

  93. Kopple JD, Zhu X, Lew NL, Lowrie EG. Body weight for height relationships predict mortality in maintenance hemodialysis patients. Kidney Int. 1999;56:1136–48.

    PubMed  CAS  Google Scholar 

  94. Depner T, Daugirdas J, Greene T et al. Dialysis dose and the effect of gender and body size on outcome in the HEMO study. Kidney Int. 2004;65:1386–94.

    PubMed  Google Scholar 

  95. Parker TF, Husni L. Delivering the prescribed dialysis. Semin Dial. 1993;6:13–15.

    Google Scholar 

  96. Lee SW, Song JH, Kim GA, Lee KJ, Kim MJ. Assessment of total body water from anthropometry-based equations using bioelectrical impedance as reference in Korean adult control and hemodialysis subjects. Nephrol Dial Transplant. 2001; 16:91–7.

    PubMed  CAS  Google Scholar 

  97. Cooper BA, Aslani A, Ryan M et al. Comparing different methods of assessing body composition in end-stage renal failure. Kidney Int. 2000;58:408–16.

    PubMed  CAS  Google Scholar 

  98. Depner TA. Assessing adequacy of hemodialysis: urea modelling. Kidney Int. 1994;45:1522–35.

    PubMed  CAS  Google Scholar 

  99. Haraldsson B. Higher Kt/Vis needed for adequate dialysis if treatment time is reduced. Nephrol Dial Transplant. 1995; 10:1845–51.

    PubMed  CAS  Google Scholar 

  100. Spiegel DM, Baker PL, Babcock S, Contiguglia R, Klein M. Hemodialysis urea rebound: the effect of increasing dialysis efficiency. Am J Kidney Dis. 1995;25:26–9.

    PubMed  CAS  Google Scholar 

  101. Katzarski KS, Charra B, Luik AJ et al. Fluid state and blood pressure control in patients treated with long and short haemodialysis. Nephrol Dial Transplant. 1999;14:369–75.

    PubMed  CAS  Google Scholar 

  102. Clark WR, Leypoldt JK, Henderson LE. Quantifying the effect of changes in the hemodialysis prescription on effective solute removal with a mathematical model. J Am Soc Nephrol. 1999;10:601–9.

    PubMed  CAS  Google Scholar 

  103. ANZDATA Registry Report. Australia and New Zealand Dialysis and Transplant Registry, Adelaide, South Australia, 1999.

    Google Scholar 

  104. Daugirdas JT, Van Stone JC, Boag JT. Hemodialysis apparatus. In: Daugirdas JT, Blake BG, Ing TS, editors. Handbook of Dialysis, 3rd edn. Philadelphia: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  105. Ronco C, Clark W. Factors affecting hemodialysis and peritoneal dialysis efficiency. Semin Dial. 2001;14:257–62.

    PubMed  CAS  Google Scholar 

  106. Raja RM, Kramer MS, Rosenbaum JL. Solute transport in comparable surface area dialyzers. Nephron. 1976;7:224–34.

    Google Scholar 

  107. Ronco C, Brendolan A, Crepaldi C, Rodighiero M, Scabardi M. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning. J Am Soc Nephrol. 2002;13(Suppl. 1):S53–61.

    PubMed  CAS  Google Scholar 

  108. Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. Kidney Int. 1997;51:2013–17.

    PubMed  CAS  Google Scholar 

  109. Depner TA, Rizwan S, Stasi TA. Pressure effects on roller pump blood flow during hemodialysis. Trans Am Soc Artif Intern Organs. 1990;36:M456–9.

    CAS  Google Scholar 

  110. Schmidt DF, Schniepp BJ, Kurtz SB, McCarthy JT. Inaccurate blood flow rate during rapid dialysis. Am J Kidney Dis. 1991;27:34–7.

    Google Scholar 

  111. Dalal S, Yu AW, Gupta DK, Kar PM, Ing TS, Daugirdas JT. L-lactate high-efficiency hemodialysis: hemodynamics, blood gas changes, potassium/phosphorus, and symptoms. Kidney Int. 1990;38:896–903.

    PubMed  CAS  Google Scholar 

  112. Powers KM, Wilkowski MJ, Helmandollar AW, Koenig KG, Bolton WK. Improved urea reduction ratio and Kt/V in large hemodialysis patients using two dialyzers in parallel. Am J Kidney Dis. 2000;35:266–74.

    PubMed  CAS  Google Scholar 

  113. Allen R, Frost TH, Hoenich NA. The influence of the dialysate flow rate on hollow fiber hemodialyzer performance. Artif Organs. 1995;19:1176–80.

    PubMed  CAS  Google Scholar 

  114. Wizeman V, Lotz C, Techert F, Uthoff S. On-line hemodiafiltration versus low-flux haemodialysis: a prospective randomized study. Nephrol Dial Transplant. 2000; 15(Suppl. 1):43–8.

    Google Scholar 

  115. Rockel A, Gilge U, Liewald A, Heidland A. Elimination of low molecular weight proteins during hemofiltration. Artif Organs. 1982;6:307–11.

    PubMed  CAS  Google Scholar 

  116. Pierratos A. Effect of therapy time and frequency on effective solute removal. Semin Dial. 2001;14:284–8.

    PubMed  CAS  Google Scholar 

  117. Buoncristiani U. Fifteen years of clinical experience with daily haemodialysis. Nephrol Dial Transplant. 1998; 13(Suppl. 6):148–51.

    PubMed  Google Scholar 

  118. Lai YH, Guh JY, Chen HC, Tsai JH. Effects of different sampling methods for measurement of post dialysis blood urea nitrogen on urea kinetic modeling derived parameters in patients undergoing long-term hemodialysis. J Am Soc Artif Intern Organs. 1995;41:211–15.

    CAS  Google Scholar 

  119. Sherman RA, Levy SS. Rate related recirculation: the effect of altering blood flow on dialyzer recirculation. Am J Kidney Dis. 1991;17:170–3.

    PubMed  CAS  Google Scholar 

  120. Level C, Lasseur C, Chuveau P, Bonarek H, Perrault L, Combe C. Performance of twin central venous catheters: influence of the inversion of inlet and outlet on recirculation. Blood Purif. 2002;20:182–8.

    PubMed  Google Scholar 

  121. Shackman R, Chisholm GD, Holden AJ, Pigott RW. Urea distribution in the body after haemodialysis. Br Med J. 1962;34:817–22.

    Google Scholar 

  122. Schindhelm K, Farrell PC. Patient-hemodialyzer interactions. Trans Am Soc Artif Intern Organs. 1978;24:357–66.

    PubMed  CAS  Google Scholar 

  123. Schneditz D, Fariyike B, Osheroff R, Levin NW. Is intercompartmental urea clearance during hemodialysis a perfusion term? A comparison of two pool ureak kinetic models. J Am Soc Nephrol. 1995;6:1360–70.

    PubMed  CAS  Google Scholar 

  124. George TO, Priester-Coary A, Dunea G, Schneditz D, Tarif N, Daugirdas JT. Cardiac output and urea kinetics in dialysis patients: evidence supporting the regional blood flow model. Kidney Int. 1996;50:1273–7.

    PubMed  CAS  Google Scholar 

  125. Man NK, Chauveau P, Kuno T, Poignet JL, Yanai M. Phosphate removal during hemodialysis, hemodiafiltration, and hemofiltration: a reappraisal. Trans Am Soc Artif Intern Organs. 1991;37:M463–5.

    CAS  Google Scholar 

  126. Leypoldt JK, Cheung AK, Deeter RB. Rebound kinetics of beta2-microglobulin after hemodialysis. Kidney Int. 1999;56:1571–7.

    PubMed  CAS  Google Scholar 

  127. Leblanc M, Charbonneau R, Lalumiere G, Cartier P, Deziel C. Postdialysis urea rebound; determinants and influence on dialysis delivery in chronic hemodialysis patients. Am J Kidney Dis. 1996;27:253–61.

    PubMed  CAS  Google Scholar 

  128. Kong CH, Tattersall JE, Greenwood RN, Farrington K. The effect of exercise during haemodialysis on solute removal. Nephrol Dial Transplant. 1999;14:2927–31.

    PubMed  CAS  Google Scholar 

  129. Ing TS, Ejaz AA, Daugirdas JT. Effect of acetate dialysate on urea kinetics during moderate efficiency dialysis. J Am Soc Nephrol. 1994;5:533 (abstract).

    Google Scholar 

  130. Schneditz D, Zaluska WT, Morris AT, Levin NW. Effect of ultrafiltration on peripheral urea sequestraton in haemodialysis patients. Nephrol Dial Transplant. 2001;16:994–8.

    PubMed  CAS  Google Scholar 

  131. Jost CMT, Agarwal R, Khair-El-Din T, Grayburn PA, Victor RH, Henrich WL. Effects of cooler temperature dialysate on hemodynamic stability in ‘problem’ dialysis patients. Kidney Int. 1993;44:606–12.

    PubMed  CAS  Google Scholar 

  132. Yu AW, Ing TS, Zabaneh RI, Daugirdas JT. Effect of dialysate temperature on central hemodynamics and urea kinetics. Kidney Int. 1995;48:237–43.

    PubMed  CAS  Google Scholar 

  133. Kaufman AM, Morris AT, Lavarias VA et al. Effects of controlled blood cooling on hemodynamic stability and urea kinetics during high-efficiency hemodialysis. J Am Soc Nephrol. 1998;9:877–83.

    PubMed  CAS  Google Scholar 

  134. Keshaviah P, Hanson G, Abraham P, Collins A. Erythropoietin (EPO) and cell membrane permeability. Kidney Int. 1990;37:304 (abstract).

    Google Scholar 

  135. Owen WF, Meyer KB, Schmidt G, Alfred H, and Medical Review Board of the ESRD Network of New England. Methodological limitations of the ESRD core indicators project: an ESRD network’s experience with implementing an ESRD quality survey. Am J Kidney Dis. 1997;30: 349–55.

    PubMed  Google Scholar 

  136. Blake PG. Practical guide to measuring adequacy of dialysis. Adv Ren Repl Ther. 1999;6:80–4.

    CAS  Google Scholar 

  137. Daugirdas JT, Depner TA, Gotch FA et al. Comparison of methods to-predict equilibrated Kt/V in the HEMO Pilot Study. Kidney Int. 1997;52:1395–405.

    PubMed  CAS  Google Scholar 

  138. Daugirdas JT, Smye WS. Effect of a two compartment distribution on apparent urea distribution volume. Kidney Int. 1997;51:1270–3.

    PubMed  CAS  Google Scholar 

  139. Daugirdas JT, Greene T, Depner TA, Gotch FA, Star RA and the Hemodialysis (HEMO) Study Group. Relationship between apparent (single-pool) and true (double-pool) urea distribution volume. Kidney Int. 1999;56:1928–33.

    PubMed  CAS  Google Scholar 

  140. Smye SE, Dunderdale E, Brownridge G, Will E. Estimation of treatment dose in high-efficiency haemodialysis. Nephron. 1994;67:24–9.

    PubMed  CAS  Google Scholar 

  141. Tattersall JE, De Takats D, Chamney P, Greenwood RN, Farrington K. The post-hemodialysis rebound: predicting and quantifying the effect on Kt/V, Kidney Int. 1996;50: 2094–102.

    PubMed  CAS  Google Scholar 

  142. Maduell F, Garcia-Valdecasas, Garcia H et al. Validation of different methods to calculate Kt/V considering postdialysis rebound. Nephrol Dial Transplant. 1997:12:1928–33.

    PubMed  CAS  Google Scholar 

  143. Pflederer BR, Torrey C, Priester-Coary A, Lau AH, Daugirdas JT. Estimating equilibrated Kt/V from an intradialytic sample: effects of access and cardiopulmonary recirculations. Kidney Int. 1995;48:832–7.

    PubMed  CAS  Google Scholar 

  144. Smye S, Tattersall JE, Will EJ. Modeling the postdialysis rebound: the reconciliation of current formulas. J Am Soc Artif Intern Organs. 1999;45:562–7.

    CAS  Google Scholar 

  145. Bhaskaran S, Tobe S, Saiphoo C, Moldoveanu A, Raj DS, Manuel MA. Blood urea levels 30 minutes before the end of dialysis are equivalent to equilibrated blood urea. J Am Soc Artif Intern Organs. 1997;43:M759–62.

    CAS  Google Scholar 

  146. Malchesky PS, Ellis P, Nosse C, Magnusson M, Lankhorst B, Nakamoto S. Direct quantification of dialysis. Dial Transplant. 1982;22:42–4.

    Google Scholar 

  147. Ellis PW, Malchesky PS, Magnusson MO, Goormastic M, Nakamoto S. Comparison of two methods of kinetic modeling. Trans Am Soc Artif Intern Organs. 1984;30:60–4.

    PubMed  CAS  Google Scholar 

  148. Aebischer P, Schorderet D, Juillerat A, Wauters JP, Fellay G. Comparison of urea kinetics and direct dialysis quantification in hemodialysis patients. Trans Am Soc Artif Intern Organs. 1985;31:338–42.

    PubMed  CAS  Google Scholar 

  149. Garred LJ, Rittau M, McCready W, Canaud B. Urea kinetic modelling by partial dialysate collection. Int J Artif Organs. 1989;12:96–102.

    PubMed  CAS  Google Scholar 

  150. Ing TS, Yu AW, Wong FK, Rafiq M, Zhou FQ, Daugirdas JT. Collection of a representative fraction of total spent hemodialysate. Am J Kidney Dis. 1995;25:810–12.

    PubMed  CAS  Google Scholar 

  151. Garred LJ, DiGiuseppe B, Chand W, McCready W, Canaud B. Kt/V and protein catabolic rate determination from serial urea measurement in the dialysate effluent stream. Artif Organs. 1992;16:248–55.

    PubMed  CAS  Google Scholar 

  152. Raj DS, Tobe SW, Saiphoo CS, Manuel MA. Mass balance index: an index for adequacy of dialysis and nutrition. Int J Artif Organs. 1998;21:328–34.

    PubMed  CAS  Google Scholar 

  153. Sternby J. Urea sensors — a world of possibilities. Adv Ren Repl Ther. 1999;6:265–72.

    CAS  Google Scholar 

  154. Ronco C, Brendolan A, Crepaldi C et al. On-line urea monitoring: a further step towards adequate dialysis prescription and delivery. Int J Artif Organs. 1995;18:534–43.

    PubMed  CAS  Google Scholar 

  155. Alloatti S, Molino A, Manes M, Bonfant G, Bosticardo GM. On-line dialysate urea monitor: comparison with urea kinetics. Int J Artif Organs. 1995;18:548–52.

    PubMed  CAS  Google Scholar 

  156. Depner TA, Keshaviah PR, Ebben JP et al. Multicenter clinical validation of an on-line monitor of dialysis adequacy. J Am Soc Nephrol. 1996;7:464–71.

    PubMed  CAS  Google Scholar 

  157. Marshall MR, Santamaria P, Collins JF. Biostat 1000 and Daugirdas blood-based hemodialysis quantification: agreement and reproducibility. Am J Kidney Dis. 1998;31:1011–18.

    PubMed  CAS  Google Scholar 

  158. Depner TA, Greene T, Gotch FA, Daugirdas JT, Keshaviah PR, Star RA. Imprecision of the hemodialysis dose when measured directly from urea removal. Hemodialysis Study Group. Kidney Int. 1999;55:635–47.

    PubMed  CAS  Google Scholar 

  159. Kopple JD, Jones MR, Keshaviah PR et al. A proposed glossary for dialysis kinetics. Am J Kidney Dis. 1995;26: 963–81.

    PubMed  CAS  Google Scholar 

  160. Lorenzo V, de Bonis E, Rufino M et al. Caloric rather than protein deficiency predominates in stable chronic haemodialysis patients. Nephrol Dial Transplant. 1995;10:1885–9.

    PubMed  CAS  Google Scholar 

  161. Frisancho AR. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am J Clin Nutr. 1984; 40:808–19.

    PubMed  CAS  Google Scholar 

  162. Acchiardo SR, Moore LW, Burk L. Morbidity and mortality in hemodialysis patients. Trans Am Soc Artif Intern Organs. 1990;36:M148–51.

    CAS  Google Scholar 

  163. Movilli E, Filippini M, Brunori G et al. Influence of protein catabolic rate on nutritional status, morbidity and mortality in elderly uraemic patients on chronic haemodialysis: a prospective 3-year follow-up study. Nephrol Dial Transplant. 1995;10:514–18.

    PubMed  CAS  Google Scholar 

  164. Shinzato T, Nakai S, Akiba T et al. Survival in long-term haemodialysis patients: results from the annual survey of the Japanese Society for Dialysis Therapy. Nephrol Dial Transplant. 1997;12:884–8.

    PubMed  CAS  Google Scholar 

  165. Mitch W. Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest. 2002;110:437–9.

    PubMed  CAS  Google Scholar 

  166. Stenvinkel P, Heimburger O, Lindholm B, Kaysen GA, Bergstrom J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol Dial Transplant. 2000;15:953–60.

    PubMed  CAS  Google Scholar 

  167. Kaysen GA, Chertow GM, Adhikarla R, Young B, Ronco C, Levin NW. Inflammation and dietary protein intake exert competing effects on serum albumin and creatinine in hemodialysis patients. Kidney Int. 2001;60:333–40.

    PubMed  CAS  Google Scholar 

  168. Kaysen GA, Dubin JA, Muller HG, Rosales LM, Levin NW. The acute-phase response varies with time and predicts serum albumin levels in hemodialysis patients. HEMO Study Group. Kidney Int. 2000;58:346–52.

    PubMed  CAS  Google Scholar 

  169. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. Hypoalbuminemia, cardiac morbidity, and mortality in end-stage renal disease. J Am Soc Nephrol. 1996;7:728–36.

    PubMed  CAS  Google Scholar 

  170. Lindsay RM, Spanner E. A hypothesis: the protein catabolic rate is dependent upon the type and amount of treatment in dialyzed uremic patients. Am J Kidney Dis. 1989;13:382–9.

    PubMed  CAS  Google Scholar 

  171. Lindsay RM, Spanner E, Heidenheim RP et al. Which comes first, Kt/V or PCR-chicken or egg? Kidney Int Suppl. 1992;38:S32–6.

    PubMed  CAS  Google Scholar 

  172. Harty J, Boulton H, Faragher B, Venning M, Gokal R. The influence of small solute clearance on dietary protein intake in continuous ambulatory peritoneal dialysis patients: a methodologic analysis based on cross-sectional and prospective studies. Am J Kidney Dis. 1996;28:553–60.

    PubMed  CAS  Google Scholar 

  173. Rufino M, de Bonis E, Martin M et al. Is it possible to control hyperphosphataemia with diet, without inducing protein malnutrition? Nephrol Dial Transplant. 1998; 13(Suppl. 3):65–7.

    PubMed  Google Scholar 

  174. Uribarri J, Levin NW, Delmez J et al. Association of acidosis and nutritional parameters in hemodialysis patients. Am J Kidney Dis. 1999;34:493–9.

    PubMed  CAS  Google Scholar 

  175. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–17.

    PubMed  CAS  Google Scholar 

  176. Bushinsky DA. The contribution of acidosis to renal osteodystrophy. Kidney Int. 1995;47:1816–32.

    PubMed  CAS  Google Scholar 

  177. Collins AJ, Hao W, Xia H et al. Mortality risks of peritoneal dialysis and hemodialysis. Am J Kidney Dis. 1999;34:1065–74.

    PubMed  CAS  Google Scholar 

  178. Fenton SS, Schaubel DE, Desmeules M et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis. 1997;30:334–42.

    PubMed  CAS  Google Scholar 

  179. Keshaviah PR, Nolph KD, Van Stone JC. The peak concentration hypothesis: a urea kinetic approach to cornparing the adequacy of continuous ambulatory peritoneal dialysis (CAPD) and hemodialysis. Pert Dial Int. 1989; 9:257–60.

    CAS  Google Scholar 

  180. Depner TA. Quantifying hemodialysis and peritoneal dialysis: examination of the peak concentration hypothesis. Semin Dial. 1994;7:315–17.

    Google Scholar 

  181. Depner TA. Benefits of more frequent dialysis: lower TAC at the same Kt/V. Nephrol Dial Transplant. 1988; 13(Suppl. 6):20–4.

    Google Scholar 

  182. Depner TA. Daily hemodialysis efficiency: and analysis of solute kinetics. Adv Renal Repl Ther. 2001;8:227–35.

    CAS  Google Scholar 

  183. Depner TA. Will daily home hemodialysis be an important future treatment for endstage renal disease? Semin Dial. 1995;8:266–8.

    Google Scholar 

  184. Paniagua R, Amato D, Vonesh E et al. Effect of increased peritoneal clearances on mortality in peritoneal dialysis: ADEMEX, a prospective randomized controlled trial. J Am Soc Nephrol. 2002;13:1307–20.

    PubMed  CAS  Google Scholar 

  185. Suri R, Depner TA, Blake PG, Heidenheim AP, Lindsay RM. Adequacy of quotidian hemodialysis. Am J Kidney Dis. 2003;42(suppl 1):42–8.

    PubMed  Google Scholar 

  186. Bommer J. If you wish to improve adequacy of dialysis, urea kinetics, such as Kt/V may be the wrong parameter to study. J Am Soc Artif Organs. 2001;47:189–91.

    CAS  Google Scholar 

  187. Leavey SF, McCullough K, Hecking E, Goddkin D, Port FK, Young EW. Body mass index and mortality in ‘healthier’ as compared with ‘sicker’ hemodialysis patients: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant. 2001;16:2386–94.

    PubMed  CAS  Google Scholar 

  188. Gotch FA, Sargent HA, Keen ML. Whither goest Kt/V? Kidney Int. 2000;58(Suppl. 76):S3–18.

    Google Scholar 

  189. Bertolatus JA, Goddard L. Evaluation of renal function in potential living kidney donors. Transplantation. 2001;71:256–60.

    PubMed  CAS  Google Scholar 

  190. Schmieder RE, Beil AH, Weihprecht H, Messerli FH. How should renal hemodynamic data be indexed in obesity? J Am Soc Nephrol. 1995;5:1709–13.

    PubMed  CAS  Google Scholar 

  191. Katzarski KS, Charra B, Luik AJ et al. Fluid state and blood pressure control in patients treated with long and short haemodialysis. Nephrol Dial Transplant. 1999;14:369–75.

    PubMed  CAS  Google Scholar 

  192. Fagugli RM, Reboldi G, Quintaliani G et al. Short daily hemodialysis: blood pressure control and left ventricular mass reduction in hypertensive hemodialysis patients. Am J Kidney Dis. 2001;38:371–6.

    PubMed  CAS  Google Scholar 

  193. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458–82.

    PubMed  CAS  Google Scholar 

  194. Held PJ, Levin NW, Bovbjerg RR, Pauly MV, Diamond LH. Mortality and duration of hemodialysis treatment. J Am Med Assoc. 1991;265:871–5.

    CAS  Google Scholar 

  195. Hanly PJ, Pierratos A. Improvement of sleep apnea in patients with chronic renal failure who undergo nocturnal hemodialysis. N Engl J Med. 2001;344:102–7.

    PubMed  CAS  Google Scholar 

  196. Disney APS. Demography and survival of patients receiving treatment for chronic renal failure in Australia and New Zealand: report on dialysis and renal tranplantation treatment from the Australia and New Zealand Dialysis and Tranplant Registry. Am J Kidney Dis. 1995;25:165–75.

    PubMed  CAS  Google Scholar 

  197. Mallick NP, Jones E, Selwood N. The European (European Dialysis and Transplantation Association-European Renal Association) Registry. Am J Kidney Dis. 1995;25:176–87.

    PubMed  CAS  Google Scholar 

  198. Iseki K, Fukiyama K. Long-term prognosis and incidence of acute myocardial infarction in patients on chronic hemodialysis. Am J Kidney Dis. 2000;36:820–5.

    PubMed  CAS  Google Scholar 

  199. Wong JS, Port FK, Hulbert-Shearon TE et al. Survival advantage in Asian-American end-stage renal disease patients. Kidney Int. 1999;55:2515–23.

    PubMed  CAS  Google Scholar 

  200. Barth RH. Short dialysis: less is still less. Semin Dial. 1995;8:251–7.

    Google Scholar 

  201. Scribner BH, Oreopoulos DG. The hemodialysis product (HDP): a better index of dialysis adequacy than Kt/V. Dial Transplant. 2002;31:13–15.

    Google Scholar 

  202. Floege J, Ketteler M. Beta2-microglobulin-derived amyloidosis: an update. Kidney Int. 2001:59(Suppl. 78):S164–71.

    Google Scholar 

  203. Miyata T, Sugiyama S, Saito A, Kurokawa K. Reactive carbonyl compounds related uremic toxicity (‘carbonyl stress’). Kidney Int. 2001;59:(Suppl. 78):S25–31.

    Google Scholar 

  204. Zoccali C, Mallamaci F, Tripepi G. AGEs and carbonyl stress: potential pathogenetic factors of long-term uraemic complications. Nephrol Dial Transplant. 2000;15(Suppl. 2):7–11.

    PubMed  CAS  Google Scholar 

  205. Leypoldt JK. Solute fluxes in different treatment modalities. Nephrol Dial Tranplant. 2000;15(Suppl. 1):3–9.

    CAS  Google Scholar 

  206. Kaiser JP, Hageman J, von Herrath D, Schaefer K. Different handling of beta2 microglobulin during hemodialysis and hemofiltration. Nephron. 1988;48:132–5.

    PubMed  CAS  Google Scholar 

  207. Locatelli F, Di Filippo S, Manzoni C. Removal of small and middle molecules by convective techniques. Nephrol Dial Transplant. 2000;15(Suppl. 2):37–44.

    PubMed  CAS  Google Scholar 

  208. Hakim RM. Influence of the dialysis membrane on outcome of ESRD patients. Am J Kidney Dis. 1998;32(Suppl. 4):S71–5.

    PubMed  CAS  Google Scholar 

  209. Cheung AK, Levin NW, Greene T et al. Effects of high-flux hemodialysis on clinical outcomes: results of the HEMO study. J Am Soc Nephrol. 2003;14:3251–63.

    PubMed  Google Scholar 

  210. Baldamus CA, Quellhorst E. Outcome of longterm hemofiltration. Kidney Int. 1985;28(Suppl. 17):S41–6.

    Google Scholar 

  211. Locatelli F, Marcelli D, Conte F, Limido A, Malberti F, Spotti D. Comparison of mortality in ESRD patients on convective and diffusive extracorporeal treatments. Kidney Int. 1999;55:286–93.

    PubMed  CAS  Google Scholar 

  212. Nakai S, Iseki K, Tabei K et al. Outcomes of hemodiafiltration based on Japanese dialysis patient registry. Am J Kidney Dis. 2001;38(Suppl. 1):S212–16.

    PubMed  CAS  Google Scholar 

  213. Goodman WG, Goldin J, Kuizon BD et al. Coronary artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342:1478–83.

    PubMed  CAS  Google Scholar 

  214. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO4, Ca x PO4 product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12:2131–8.

    PubMed  CAS  Google Scholar 

  215. Santoro A. Counfounding factors in the assessment of delivered hemodialysis dose. Kidney Int. 2000;58(Suppl. 76): S19–27.

    Google Scholar 

  216. Daugirdas JT, Van Stone JC. Physiological principles and urea kinetic modeling. In: Daugrdas JT, Blake BG, Ing TS, editors. Handbook of Dialysis, 3rd edn. Philadelphia: Lippincott Williams & Wilkins; 2001:15–45.

    Google Scholar 

  217. Jindal KK, Goldstein M. Urea kinetic modelling in chronic hemodialysis: benefits, problems, and practical solutions. Semin Dial. 1988;1:82–5.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Suri, R., Blake, P.G. (2004). Adequacy of hemodialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics