Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 115))

Abstract

Atomistic simulations of an accelerating edge dislocation were carried out to study drag and inertial effects. Using an embedded atom potential for nickel the Peierls stress, the effective mass and the drag coefficient of an edge dislocation was determined for different temperatures and stresses in a simple slab geometry. A dislocation intersecting a void is used as a model to demonstrate the importance of inertial effects for dynamically overcoming short range obstacles. Significant effects are found even at room temperature. Including inertial effects in discrete dislocation dynamics simulations allows to reproduce the atomistic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Suenaga and J. M. Galligan. Dislocation motion in the normal and the superconducting states. Sc,. Metall., 5:829–836, 1971.

    Article  Google Scholar 

  2. A. V. Granato. Dislocation inertial effects in the plasticity of superconductors. Phys. Rev. B, 4:2196–2201, 1971.

    Article  Google Scholar 

  3. R. B. Schwarz and R. Labusch. Dynamic simulation of solution hardening. J. Appl. Phys., 49:5174–5187, 1978.

    Article  Google Scholar 

  4. K.-D. Fusenig and E. Nembach. Dynamic dislocation effects in precipitation hardened materials. Acta Metall. Mater., 41:3181–3189, 1993.

    Article  Google Scholar 

  5. E. Vigueras-Santiago, A. A. Krokhin et al. Creep at low temperatures: unzipping of dislocations, inertia and criticality processes. Physica A, 258:11–16, 1998.

    Article  Google Scholar 

  6. M. Hiratani and E. M. Nadgorny. Combined modelling of dislocation motion with thermally activated and drag-dependent stages. Acta Metall., 49:4337–4346, 2001.

    Google Scholar 

  7. R. D. Isaac and A. V. Granato. Rate theory of dislocation motion: Thermal activation and inertial effects. Phys. Rev. B, 37:9278–9284, 1988.

    Article  Google Scholar 

  8. A. I. Landau. The effect of dislocation inertia on the thermally activated low-temperature plasticity of materials: I. theory. Phys. Status Solidi A, 61:555–563, 1980.

    Article  Google Scholar 

  9. V. L. Indenbom and V. Chernov. Dynamic waves along dislocations overcoming local obstacles. Soy. Phys. Solid State, 21:759–764, 1979.

    Google Scholar 

  10. L. P. Kubin, G. Canova et al. Dislocation microstructures and plastic flow: A 3D simulation. Solid-State Phys., 23&24:455–472, 1992.

    Google Scholar 

  11. J. Weertman. High velocity dislocations. In P. G. Shewmon and V. F. Zackay, eds., Response of Metals to High Velocity Deformation, Metallurgical Society Conferences, pp. 205–247. Interscience, New York, 1961.

    Google Scholar 

  12. M. Sakamoto. High-velocity dislocations: effective mass, effective line tension and multiplication. Philos. Mag. A, 63:1241–1248, 1991.

    Article  Google Scholar 

  13. E. M. Nadgornyi. Dislocation dynamics and mechanical properties of crystals. vol. 31 of Progress in Materials Science. 1988.

    Google Scholar 

  14. G. Leibfried. Über den Einflußthermisch angeregter Schallwellen auf die plastische Deformation. Z. Phys., 127:344–356, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. D. de la Rubia, H. M. Zbib et al. Multiscale modelling of plastic flow localization in irradiated materials. Nature, 406:871–874, 2000.

    Article  Google Scholar 

  16. J. E. Angelo, N. R. Moody and M. I. Baskes. Trapping of hydrogen to lattice defects in nickel. Modelling Simul. Mater. Sci. Eng., 3:289, 1995.

    Article  Google Scholar 

  17. J. R. Beeler. Radiation Effects Computer Experiments, p. 27. North-Holland, Amsterdam, 1983.

    Google Scholar 

  18. W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31:1695–1697, 1985.

    Article  Google Scholar 

  19. D. Weygand, L. Friedman et al. Aspects of boundary-value problem solutions with threedimensional dislocation dynamics. Modelling Simul. Mater. Sci. Eng., 10:437–468, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bitzek, E., Weygand, D., Gumbsch, P. (2004). Atomistic Study of Edge Dislocations in FCC Metals: Drag and Inertial Effects. In: Kitagawa, H., Shibutani, Y. (eds) IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength. Solid Mechanics and its Applications, vol 115. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2111-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2111-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6576-6

  • Online ISBN: 978-1-4020-2111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics