Skip to main content

High-Pressure Single-Crystal Diffractometry with Laboratory X-Ray Sources

High-pressure structural determinations at home laboratories

  • Conference paper
High-Pressure Crystallography

Part of the book series: NATO Science Series ((NAII,volume 140))

Abstract

The invention of the diamond-anvil high-pressure cell (DAC) [ 1,2] coincided with the development of 4-circle diffractometers [3]. When the application of gaskets paved the way for the first single-crystal high-pressure studies in hydrostatic environment [4], diffractometers were still not considered indispensable for determining the crystal structures at high pressures. For example, the high-pressure crystal structure of chloroform was studied using a modified precession camera [5]. Nevertheless, soon after it was the use of 4-circle diffractometers that came to dominate the scarce high-pressure determinations. The diffractometers then were usually equipped with sealed or rotating-anode X-ray tubes and ‘single-point’ scintillator-photomultiplier detectors. Throughout the 1980’s, the first synchrotron-sources were applied for high-pressure studies, and at the synchrotrons, 2dimensional image-plate detectors started to be used for high-pressure determinations. Nowadays we are witnessing rapid development in the designs of high-pressure DAC’s and diffractometers, which are now routinely equipped with 2-dimensional CCD detectors. Thus, in this way, history has come full circle, in that researchers trained in photographic techniques have applied their experience to 2-dimensional detectors. The component parts of diffractometric equipment, which itself is constantly under development, include sophisticated detectors, X-ray sources, goniometers and their controlling software. At present it may appear that the main thrust of high-pressure research has moved to synchrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jamieson, J.C., Lawson, A.W. and Nachtrieb, N.D. (1959) New device for obtaining X–ray diffraction patterns from substances exposed to high pressure, Rev. Sci. Instrum. 30, 1016–1019

    Article  ADS  Google Scholar 

  2. Weir, C.E., Lippincott, E.R., Van Valkenburg, A. and Bunting, E.N. (1959) Infrared studies in the 1– to 15micron region to 30,000 atmospheres, J Res. Nat. Bur. Standards, Sec. A63, 55–62.

    Article  Google Scholar 

  3. Arndt, U.W. and Willis, B.T.M. (1966) Single Crystal Diffractometry, University Press, Cambridge.

    Book  Google Scholar 

  4. Van Valkenburg, A. (1964) Diamond high–pressure windows, Diamond Research, 17–20.

    Google Scholar 

  5. Fourme, R. (1968) Appareillage pour etudes radiocrystallographiques sous pression et à temperature variable, J. Appl. Ciystallogr. 1, 23–30.

    Article  Google Scholar 

  6. Tkacz, M. (1995) Novel high–pressure technique for loading diamond anvil cell with hydrogen, Polish J. Chem. 69, 1205–1209.

    Google Scholar 

  7. Holzapfel, W.B. and Isaacs N.S. (Eds.) High–Pressure Techniques in Chemistry and Physics, Oxford University Press, Oxford 1997.

    Google Scholar 

  8. Hazen, R.T. and Finger, L.W. (1982) Comparative Crystal Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  9. King, H.E.Jr. (1981). High-Pressure Crystallography with a CAD-4, Enraf-Nonius, Delft.

    Google Scholar 

  10. Ahsbahs, H. (1987) X-Ray diffraction on single crystals at high pressure, Prog. Crystal Growth and Charact. 14, 263–302.

    Article  Google Scholar 

  11. Miletich, R., Allan, D.R. and Kuhs, W.F. (2000) High-pressure single-crystal techniques, Reviews in Mineralogy and Geochemistry 41, 445–519.

    Article  Google Scholar 

  12. Angel, R.J., Downs, R.T. and Finger, L.W. (2000) High–temperature—high-pressure diffractometry, Reviews in Mineralogy and Geochemistry 41, 559–596.

    Article  Google Scholar 

  13. Kuhs, W.F., Bauer, F.C., Hausmann, R., Ahsbahs, H., Dorwarth, R. and Hölzer, K. (1996) Single crystal diffraction with X-rays and neutrons: high quality at high pressure? High Pressure Res. 14, 341–352.

    Article  ADS  Google Scholar 

  14. Malinowski, M. (1987) A diamond-anvil high-pressure cell for X-ray diffraction on a single crystal, J. Appl. Crystallogr. 20, 379–382.

    Article  Google Scholar 

  15. Merrill, L. and Bassett, W.A. (1974) Miniature diamond anvil pressure cell for single crystal X-ray diffraction studies, Rev. Sci. Instrum. 45, 290–294.

    Article  ADS  Google Scholar 

  16. Katrusiak, A. (2002) Absorption correction for crystal-environment attachments from direction cosines, Z. Kristallogr. 216, 646–647.

    Article  Google Scholar 

  17. Katrusiak, A. (1999) A hinge goniometer head, J. Appl. Crystallogr. 32, 576–578.

    Article  Google Scholar 

  18. Hamilton, W.C. (1974) Angle settings for four–circle diffractometers, in International Tables for X–ray Crystallography, Vol. IV, Birmingham: Kynoch Press (Present distributor: Kluwer Academic Publishers, Dordrecht). pp 273–284.

    Google Scholar 

  19. King, H.E.Jr. and Finger, L.W. (1979) Diffracted beam crystal centering and its application to high–pressure crystallography, J. Appl. Crystallogr. 12, 374–378.

    Article  Google Scholar 

  20. Dera, P. and Katrusiak, A. (1999) Diffractometric crystal centring, J. Appl. Crystallogr. 32, 510–515.

    Article  Google Scholar 

  21. Paciorek, W.A., Meyer, M. and Chapuis, G. (1999) On the geometry of a modern imaging diffractometer, Acta Cryst. A55, 543–557.

    Google Scholar 

  22. Budzianowski, A. and Katrusiak, A. (2003). High-pressure crystallographic experiments with a CCD detector. in High-Pressure Crystallography (Eds.: A. Katrusiak and P.F. McMillan), Kluwer, Dordrecht, pp. 101–112.

    Google Scholar 

  23. Katrusiak, A. and Ryan, T.W. (1988). Homogeneity of graphite-monochromated X-ray beams, Acta Crystallogr. A44, 623–627.

    Google Scholar 

  24. Stern, E. A. Kalman, Z. Lewis,. and Lieberman, K. (1988) Simple method for focusing X-rays using tapered capillaries, Appl. Opt. 27, 5135–5139.

    Article  ADS  Google Scholar 

  25. Balaic, D.X., Nugent, G.A., Barnea, Z., Garrett, R. and Wilkins, S.W. (1995) Focusing of X-ray by total external reflection from a paraboloidally tapered glass capillary, J. Synchrotron Rad. 2, 295–299.

    Article  Google Scholar 

  26. Balaic, D.X., Barnea, Z., Nugent, G.A., Garrett, R., Varghese, J.N. and Wilkins, S.W. (1995) Protein crystal diffraction patterns using a capillary-focused synchrotron X-ray beam, J. Synchrotron Rad. 3, 289–295.

    Article  Google Scholar 

  27. Kumakhov, M.A. and Komarov, F.F. (1990) Multiple reflection from surface X-ray optics, Phys. Rep. 191, 289–350.

    Article  ADS  Google Scholar 

  28. Li, P.-W. and Bi, R.-C. (1998) Applications of polycapillary X-ray optics in protein crystallography, J. Appl. Crystallogr. 31, 806–811.

    Article  Google Scholar 

  29. Gubarev, M., Ciszak, E., Ponomarev, I., Gibson, W. and Joy, M. (2000) A compact X–ray system for macromolecular crystallography, Rev. Sci. Instrum. 71, 3900–3904.

    Article  ADS  Google Scholar 

  30. Coppens, P., Ross, F.K., Blessing, R.H., Cooper, W.F., Larsen, F.K., Leipoldt, J.G. and Rees, B. (1974) A cryostat for collection of three-dimensional diffractometer data at liquid helium temperatures, Acta. Cryst. 7, 315–319.

    Google Scholar 

  31. Konno, M., Okamoto, T., Shirotani, I. (1989) Structure changes and proton transfer between 0...0 in bis(dimethylglyoximato)platimum(II) at low temperature (150K) and at high pressures (2.39 and 3.14 GPa) Acta Cryst. B45, 142–147.

    Google Scholar 

  32. Yamanaka, T., Fukuda, T., Hattori, T. and Sumiya, H, (2001) New diamond anvil cell for single-crystal analysis, Rev. Sci. Instrum. 72, 1458–1462.

    Article  ADS  Google Scholar 

  33. Loveday, J.S., McMahon, M.I. and Nelmes, R.J. (1990) The effect of diffraction of a diamond-anvil cell on single-crystal sample intensities, J. Appl. Crystallogr. 23, 392–396.

    Article  Google Scholar 

  34. Zhang, Li and Ahsbahs, H. (1998) New pressure domain in single crystal X-ray diffraction using a sealed source, Rev. High Pressure Sci. Technol. 7, 145–147.

    Article  MATH  Google Scholar 

  35. Katrusiak, A. (1995) High-pressure X-ray diffraction study of pentaerithritol, Acta Cryst. B51, 873–879.

    Google Scholar 

  36. Yaoita, K., Katayama, Y., Tsuji, K., Kikegawa, T., and Shimomura, O. (1997) Angle-dispersive diffraction measurement system for high-pressure experiments using a multichannel collimator, Rev. Sci. Instrum. 68, 2106–2110.

    Article  ADS  Google Scholar 

  37. Ibraimov, N.S., Kumakhov, M.A. and Lutsu, A.V. (2003) Personal communication.

    Google Scholar 

  38. Katrusiak, A. (1993) High-Pressure X-ray Diffraction studies on organic crystals, Cryst. Struct. Technology 26, 523–531.

    Article  Google Scholar 

  39. Katrusiak, A. and Nelmes, R.J. (1986) A test of the accuracy of high-pressure measurements using a MerrillBassett diamond–anvil cell, J. Appl. Cryst. 19, 73–76.

    Article  Google Scholar 

  40. Von Dreele, R.B. and Hanson, R.C. (1984) Structure of NH3–III at 1.28 GPa and room temperature, Acta Cryst. A40, 1635–1638.

    Google Scholar 

  41. Katrusiak, A. (2004). Shadowing and absorption corrections for single-crystal high-pressure diffraction measurements - being published.

    Google Scholar 

  42. Seal, M. (1984) Diamond anvils, High Temperatures – High Pressures 16, 573–579.

    Google Scholar 

  43. Silvera, I.F. (1999) The double-diamond anvil cell, the poor-man’s megabar pressure cell, Rev. Sci. Instrum. 70, 4609–4611.

    Article  ADS  Google Scholar 

  44. Dadashev, A., Pasternak, M.P., Rozenberg, G.Kh. and Taylor, R.D. (2001) Applications of perforated diamond anvils for very high–pressure research, Rev. Sci. Instrum. 72, 2633–2637.

    Article  ADS  Google Scholar 

  45. Pasternak, M.P. (2001) — personal communication.

    Google Scholar 

  46. Duisenberg, A.J.M., Hooft, R.W.W. Schreurs, A.M.M. and Kroon, J. (2000) Accurate cells from area-detector images, J. Appl. Crystallogr. 33, 893–898.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Katrusiak, A. (2004). High-Pressure Single-Crystal Diffractometry with Laboratory X-Ray Sources. In: Katrusiak, A., McMillan, P. (eds) High-Pressure Crystallography. NATO Science Series, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2102-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2102-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1954-8

  • Online ISBN: 978-1-4020-2102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics