Skip to main content

SEM State Space Modeling of Panel Data in Discrete and Continuous Time and its Relationship to Traditional State Space Modeling

  • Chapter
Recent Developments on Structural Equation Models

Part of the book series: Mathematical Modelling: Theory and Applications ((MMTA,volume 19))

Abstract

The state space approach, introduced by Kalman (1960) and Zadeh and Desoer (1963), distinguishes modern systems and control theory (Cames, 1988; Hannan & Deistler, 1988; Polderman & Willems, 1998) from the classical theory. Its application field, starting from space technology in the 1960s, has extended considerably since (Shumway & Stoffer, 2000). The state space model covers an extremely general class of dynamic models. In fact, all nonanticipative models (models with no causal arrows heading backward in time) can be represented in state space form. For example, both the Box-Jenkins ARMA model and the extended ARMAX model, which adds exogenous or input variables to the ARMA model, are easily formulated as special cases of the state space model (Cames, 1988; Deistler, 1985; Ljung, 1985). The state space model covers also longitudinal latent factor and path analysis models and allows the optimal estimation of the latent states or factor scores (Oud, van den Bercken & Essers, 1990; Oud, Jansen, van Leeuwe, Aarnoutse, & Voeten, 1999). Latent state estimation is performed by two important results of the state space approach: the Kalman filter and smoother (Kalman, 1960; Rauch, Tung, & Striebel, 1965).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T.W. (1958). An introduction to multivariate statistical analysis. New York: Wiley.

    Google Scholar 

  • Arbuckle, J.L., & Wothke, W. (1999). AMOS 4.0 user’s guide. Chicago: Smallwaters.

    Google Scholar 

  • Arnold, L. (1974). Stochastic differential equations. New York: Wiley.

    Google Scholar 

  • Baltagi, B.H. (1995). Econometric analysis of panel data. Chichester: Wiley.

    Google Scholar 

  • Bergstrom, A.R. (1984). Continuous time stochastic models and issues of aggregation over time. In Z. Griliches & M.D. Intriligator (Eds.), Handbook of econometrics: Vol. 2. (pp. 1145–1212). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Bergstrom, A.R. (1988). The history of continuous-time econometric models. Econometric Theory, 4, 365–383.

    Article  Google Scholar 

  • Browne, M.W., & Arminger, G. (1985). Specification and estimation of mean-and covariance-structure models. In G. Arminger, C.C. Clogg, & M.E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences(pp. 185–249). New York: Plenum Press.

    Google Scholar 

  • Caines, P.E. (1988). Linear stochastic systems. New York: Wiley.

    Google Scholar 

  • Caines, P.E., & Rissanen, J. (1974). Maximum likelihood estimation of pa­rameters in multivariate Gaussian processes. IEEE Transactions on Information Theory, 20, 102–104.

    Article  Google Scholar 

  • Deistler, M. (1985). General structure and parametrization of ARMA and state-space systems and its relation to statistical problems. In E.J. Hannan, P.R. Krishnaiah, & M.M. Rao (Eds.), Handbook of statistics: Vol. 5. Time series in the time domain (pp. 257–277). Amsterdam: North-Holland.

    Google Scholar 

  • Dembo, A., & Zeitouni, O. (1986). Parameter estimation of partially observed continuous time stochastic processes via the EM algorithm. Stochas­tic Processes and their Applications, 23, 91–113.

    Article  Google Scholar 

  • Desoer, C.A. (1970). Notes for a second course on linear systems. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Goodrich, R.L., & Caines, P.E. (1979). Linear system identification from non-stationary cross-sectional data. IEEE Transactions on Automatic Control, 1979,403–411.

    Article  Google Scholar 

  • Gandolfo, G. (1993). Continuous-time econometrics has come of age. In G. Gandolfo (Ed.), Continuous time econometrics (pp. 1–11). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Hamerle, A., Nagl, W., & Singer, H., (1991). Problems with the estimation of stochastic differential equations using structural equation models. Journal of Mathematical Sociology, 16, 201–220.

    Article  Google Scholar 

  • Hamerle, A., Singer, H., & Nagl, W. (1993). Identification and estimation of continuous time dynamic systems with exogenous variables using panel data. Econometric Theory, 9, 283–295.

    Article  Google Scholar 

  • Hannan, E.J., & Deistler, M. (1988). The statistical theory of linear systems. New York: Wiley.

    Google Scholar 

  • Hertzog, C, & Nesselroade, J.R. (1987). Beyond autoregressive models: Some implications of the trait-state distinction for the structural mod­eling of developmental change. Child Development, 58, 93–109.

    Article  PubMed  Google Scholar 

  • Hsiao, C. (1986). Analysis of panel data. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jansen, R.A.R.G., & Oud, J.H.L. (1995). Longitudinal LISREL model esti­mation from incomplete panel data using the EM algorithm and the Kalman smoother. Statistica Neerlandica, 49, 362–377.

    Article  Google Scholar 

  • Jazwinski, A.H. (1970). Stochastic processes and filtering theory. New York: Academic Press.

    Google Scholar 

  • Jones, R.H. (1985). Time series analysis with unequally spaced data. In E.J. Hannan, P.R. Krishnaiah, & M.M. Rao (Eds.), Handbook of statistics: Vol. 5. Time series in the time domain (pp. 157–177). Amsterdam: North-Holland.

    Google Scholar 

  • Joreskog, K.G. (1973). A general method for estimating a structural equation system. In A.S. Goldberger & O.D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York

    Google Scholar 

  • Joreskog, K.G., & Sorbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.

    Google Scholar 

  • Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering(Trans. ASME, ser. D), 82, 35–45.

    Article  Google Scholar 

  • Little, D.J.A., & Rubin, D.B. (1987). Statistical analysis with missing data. New York: Wiley.

    Google Scholar 

  • Ljung, L. (1985). Estimation of parameters in dynamical systems. In E.J. Hannan, RR. Krishnaiah, & M.M. Rao (Eds.), Handbook of statistics: Vol. 5. Time series in the time domain (pp. 189–211). Amsterdam: North-Holland.

    Google Scholar 

  • MacCallum, R., & Ashby, EG. (1986). Relationships between linear systems theory and covariance structure modeling. Journal of Mathematical Psychology, 30, 1–27.

    Article  Google Scholar 

  • Meditch, J.S. (1969). Stochastic optimal linear estimation and control. New York: McGraw-Hill.

    Google Scholar 

  • Mehra, R.K. (1971). Identification of stochastic linear dynamic systems using Kalman filter representation. AlAA Journal23, 28–31.

    Google Scholar 

  • Molenaar, RC.M. (1985). A dynamic factor model for the analysis of multi­variate time series. Psychometrika t 50., 181–202.

    Article  Google Scholar 

  • Molenaar, RC.M., de Gooijer, J.G., & Schmitz, B. (1992). Dynamic factor analysis of nonstationary multivariate time series. Psychometrika,57, 333–349.

    Article  Google Scholar 

  • Neale, M.C. (2000). Individual fit, heterogeneity, and missing data in multi-group structural equation modeling. In T.D. Little, K.U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data(pp. 219–240). Mahwah NJ: Lawrence Erlbaum.

    Google Scholar 

  • Neale, M.C, Boker, S.M., Xie, G., & Maes, H.H. (1999) Mx: Statistical Modeling(5th ed.). Richmond VA: Department of Psychiatry.

    Google Scholar 

  • Oud, J.H.L. (1978). Syteem-methodologie in sociaal-wetenschappelijk onder-zoek [Systems methodology in social science research]. Doctoral dissertation. Nijmegen, The Netherlands: Alfa.

    Google Scholar 

  • Oud, J.H.L. (2001). Quasi-longitudinal designs in SEM state space modeling. Statistica Neerlandica t 55., 200–220.

    Article  Google Scholar 

  • Oud, J.H.L. (2002). Continuous time modeling of the cross-lagged panel de­sign. Kwantitatieve Methoden, 23(69), 1–26.

    Google Scholar 

  • Oud, J.H.L., & Jansen, R.A.R.G. (1995). An ARMA extension of the longitudinal LISREL model for LISKAL. In I. Parchev (Ed.), Multivariateanalysis in the behavioral sciences: philosophic to technical, (pp. 49–69). Sofia: “Prof. Marin Drinov” Academic Publishing House.

    Google Scholar 

  • Oud, J.H.L., & Jansen, R.A.R.G. (1996). Nonstationary longitudinal LIS-REL model estimation from incomplete panel data using EM and the Kalman smoother. In U. Engel & J. Reinecke (Eds.), Analysis of change: Advanced techniques in panel data analysis (pp. 135–159). Berlin: Walter de Gruyter.

    Google Scholar 

  • Oud, J.H.L., & Jansen, R.A.R.G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199–215.

    Article  Google Scholar 

  • Oud, J.H.L., Jansen, R.A.R.G., van Leeuwe, J.F.J., Aarnoutse, C.A.J., & Voeten, M.J.M. (1999). Monitoring pupil development by means of the Kalman filter and smoother based upon SEM state space modeling. Learning and Individual Differences, 11, 121–136.

    Article  Google Scholar 

  • Oud, J.H.L., van den Bercken, J.H.L., & Essers, R.J. (1986). Longitudinal factor scores estimation using the Kalman filter. Kwantitatieve Methoden, 7(20), 109–130.

    Google Scholar 

  • Oud, J.H.L., van den Bercken, J.H.L., & Essers, R.J. (1990). Longitudinal factor scores estimation using the Kalman filter. Applied Psychological Measurement, 14, 395–418.

    Article  Google Scholar 

  • Oud, J.H.L., van Leeuwe, J.F.J., & Jansen, R.A.R.G. (1993). Kalman filtering in discrete and continuous time based on longitudinal LISREL mod­els. In J.H.L. Oud & A.W. van Blokland-Vogelesang (Eds.), Advances in longitudinal and multivariate analysis in the behavioral sciences (pp. 3–26). Nijmegen: ITS.

    Google Scholar 

  • Phadke, M.S., & Wu, S.M. (1974). Modeling of continuous stochastic processes from discrete observations with applications to sunspot data. Journal of the American Statistical Association, 69, 325–329.

    Article  Google Scholar 

  • Phillips, P.C.B. (1993). The ET Interview: A.R. Bergstrom. In P.C.B. Phillips (Ed.), Models, methods, and applications of econometrics (pp. 12–31). Cambridge MA: Blackwell.

    Google Scholar 

  • Polderman, J.W., & Willems, J.C. (1998). Introduction to mathematical systems theory: A behavioral approach. Mooresville IN: Scientific Software.

    Book  Google Scholar 

  • Rauch, H.E., Tung, E, & Striebel, C.T. (1965). Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3, 1445–1450.

    Article  Google Scholar 

  • Ruymgaart, Pa. & Soong, T.T. (1985). Mathematics of Kalman-Bucy filtering. Berlin: Springer.

    Book  Google Scholar 

  • Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11, 61–70.

    Article  Google Scholar 

  • Shumway, R.H., & Stoffer, D.S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3, 253–264.

    Article  Google Scholar 

  • Shumway, R.H., & Stoffer, D.S. (2000). Time series analysis and its applica­tions. New York: Springer.

    Book  Google Scholar 

  • Singer, H. (1990). Parameterschdtzung in zeitkontinuierlichen dynamischen Systemen. Konstanz: Hartung-Gorre.

    Google Scholar 

  • Singer, H. (1993). Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components. Journal of Time Series Analysis, 14, 527–545.

    Article  Google Scholar 

  • Wothke, W. (2000). Longitudinal and multigroup modeling with missing data. In T.D. Little, K.U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data(pp. 219–240). Mahwah NJ: Lawrence Erlbaum.

    Google Scholar 

  • Young, P. (1985). Recursive identification, estimation and control. In E.J. Hannan & P.R. Krishnaiah (Eds.), Handbook of statistics, vol 5: Time series in the time domain(pp. 213–255). Amsterdam: North-Holland.

    Google Scholar 

  • Zadeh, L.A., & Desoer, C.A. (1963). Linear System theory: The state space approach. New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oud, J. (2004). SEM State Space Modeling of Panel Data in Discrete and Continuous Time and its Relationship to Traditional State Space Modeling. In: van Montfort, K., Oud, J., Satorra, A. (eds) Recent Developments on Structural Equation Models. Mathematical Modelling: Theory and Applications, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-1958-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-1958-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6549-0

  • Online ISBN: 978-1-4020-1958-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics