Skip to main content

Phospholipids and calcification

  • Chapter
Calcified Tissue

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

  • 35 Accesses

Abstract

Phospholipids are predominantly found within the membranes of cells and subcellular organdies. On average, the phospholipids account for 50 per cent of the membrane lipid, the other half being cholesterol. Together, the lipids and the proteins within membranes control cell function (Seelig and MacDonald, 1987). The phospholipids are known to play a role determining cell shape, controlling the flux of ions into and out of the cell, mediating the fusion of cells, and regulating cell metabolism. Phospholipids are also involved in the activation of certain enzymes, and provide a reservoir for the storage of compounds, or precursors of these compounds, which control cell function (e.g., prostaglandins, leukotrienes, diacylglycerides, acetylcholine, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, S. Y. (1976). Analysis of matrix vesicles and their role in the calcification of epiphyseal cartilage. Fed. Proc., 35, 142

    Google Scholar 

  • Ali, S. Y., Sajdera, S. W. and Anderson, H. C. (1970). Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Nat. Acad. Sci., U.S., 67, 1513–20

    Google Scholar 

  • Anderson, H. C. (1969). Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol., 41, 59–72

    Google Scholar 

  • Anderson, H. C. (1980). Calcification Processes. Path. Ann., 15, 45–75

    Google Scholar 

  • Anderson, H. C. and Reynolds, J. J. (1973). Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vesicles and their role in calcification. Devel. Biol., 34, 211–37

    Google Scholar 

  • Anderson, H. C., Cecil, R. and Sajdera, S. W. (1975). Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles. Am. J. Path., 79, 237–54

    Google Scholar 

  • Anghileri, L. J. (1972). Phospholipid-calcium complexes in experimental tumors. Experien-tia, 28, 1086–9

    Google Scholar 

  • Ansell, G. B. and Spanner, S. (1982). In Phospholipids (eds A. Neuberger and L. L. M. van Deenen), Elsevier, Amsterdam, pp. 1–43

    Google Scholar 

  • Atkin, I., Pita, J. C., Ornoy, A., Agundez, A., Castiglione, G. and Howell, D. S. (1985). Effects of vitamin D metabolites on healing of low phosphate vitamin D-deficient induced rickets in rats. Bone, 6, 113–23

    Google Scholar 

  • Aurora, T. S., Li, M., Cummins, H. Z. and Haines, T. H. (1985). Preparation and characterization of monodisperse unilamellar phospholipid-vesicles with selected diameters of from 300 to 600 nm. Biochim. Biophys. Acta, 820, 250–8

    Google Scholar 

  • Bernard, G. W. (1969). The ultrastructural interface of bone crystals and organic matrix in woven and lamellar endochondral bone. J. Dent. Res., 48, 781–8

    Google Scholar 

  • Berridge, M. J. (1984). Inositol triphosphate and diacylglycerol as second messengers. Biochem. J., 220, 345–60

    Google Scholar 

  • Billah, M. M., Lapetina, E. G. and Cuatrecasas, P. (1981). Phosphatidic acid — a possible mechanism for the production of arachidonate acid. J. Biol. Chem., 256, 5399–403

    Google Scholar 

  • Boggs, J., Wood, D., Moscarello, M. and Papahadjapolous, D. (1977). Lipid phase separation induced by hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles. Biochem., 16, 2325–33

    Google Scholar 

  • Boskey, A. L. (1981). In The Chemistry and Biology of Mineralized Connective Tissues (ed. A. Veis), Elsevier, North Holland, pp. 531–7

    Google Scholar 

  • Boskey, A. L. (1985). Lipid changes in the bones of the healing vitamin D deficient, phosphate deficient rat. Bone, 6, 173–8

    Google Scholar 

  • Boskey, A. L. and Dickson, I. (1988). Influence of Vitamin D status on the content of complexed Acidic phospholipids in Chick Diaphyseal Bone. J. Bone Min. Res., 4, 365–71

    Google Scholar 

  • Boskey, A. L. and Marks, S. C. Jr (1985). Mineral and matrix alterations in the bones of incisors-absent (ia/ia) osteopetrotic rat. Calcif. Tiss. Intl., 37, 287–92

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1973). Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. J. Phys. Chem., 77, 2313–7

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1974). Magnesium stabilisation of amorphous calcium phosphate. Mat. Res. Bull., 9, 907–16

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1976a). Extraction of a calcium-phospholipid phosphate complex from bone. Calcif. Tiss. Res., 19, 273–83

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1976b). In vitro nucleation of hydroxyapatite by a bone Ca-PL-PO4 complex. Calcif. Tiss. Res., 22S, 197–201

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1977). The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcif. Tiss. Res., 23, 251–8

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1980). Effect of magnesium on lipid-induced calcification: an in vitro model for bone mineralization. Calcif. Tiss. Intl., 32, 139–43

    Google Scholar 

  • Boskey, A. L. and Posner, A. S. (1982). Optimal conditions for Ca-acidic phospholipid phosphate complex formation. Calcif. Tiss. Intl., 34, s1-s7

    Google Scholar 

  • Boskey, A. L. and Reddi, A. H. (1983). Changes in lipids during matrix induced endochondral bone formation. Calcif. Tiss. Intl., 35, 549–54

    Google Scholar 

  • Boskey, A. L. and Timchak, D. M. (1983). Phospholipid changes in the bones of the vitamin D deficient, phosphate deficient, immature rat. Metab. Bone Dis. Rel. Res., 5, 81–5

    Google Scholar 

  • Boskey, A. L. and Wientroub, S. (1986). The effect of vitamin D deficiency on rat bone lipid composition. Bone, 7, 277–81

    Google Scholar 

  • Boskey, A. L., Goldberg, M. R. and Posner, A. S. (1977). Calcium-phospholipid-phosphate complexes in mineralizing tissues. Proc. Soc. Exp. Biol. Med., 157, 588–91

    Google Scholar 

  • Boskey, A. L. Goldberg, M. R. and Posner, A. S. (1979). Effect of diphosphonates on hydroxyapatite formation induced by calcium-phospholipid-phosphate complexes. Calcif. Tiss. Intl., 27, 83–8

    Google Scholar 

  • Boskey, A. L. Posner, A. S., Lane, J. M., Goldberg, M. R. and Cordelia, D. M. (1980). Distribution of lipids associated with mineralization in the bovine epiphyseal growth plate. Arch. Biochem. Biophys., 199, 305–11

    Google Scholar 

  • Boskey, A. L., Boyan-Salyers, B. D., Burstein, L. S. and Mandel, I. D. (1981). Lipids associated with salivary stone mineralization. Arch. Oral. Biol., 26, 779–85

    Google Scholar 

  • Boskey, A. L., Burstein, L. S. and Mandel, I. (1983a). Phospholipids associated with parotid sialoliths. Arch. Oral. Biol., 28, 655–67

    Google Scholar 

  • Boskey, A. L., Vigorita, V., Stuchin, S., Sencer, O. S. and Lane, J. M. (1983b). Chemical characterization of the mineral deposits in tumoral calcinosis. Clin. Orthop., 178, 258–69

    Google Scholar 

  • Boskey, A. L., Lewinson, D. and Bullough, P. G. (1984). The effects of trifluoperazine on calcifying tissue in the immature rat. Proc. Soc. Exp. Biol. Med., 176, 154–63

    Google Scholar 

  • Boskey, A. L., Wians, F. H. and Hauschka, P. V. (1985). The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif. Tiss. Intl., 37, 57–62

    Google Scholar 

  • Boskey, A. L., DiCarlo, E. D., Gilder, H., Donnelly, R. and Wientroub, S. (1988). The effect of short-term treatment with vitamin D metabolites on bone lipid and mineral composition in healing vitamin D-deficient rats. Bone, 185–94

    Google Scholar 

  • Boyan, B. and Boskey, A. L. (1984). Co-isolation of proteolipids and calcium-phospholipid-phosphate complex. Calcif. Tiss. Intl., 36, 214–18

    Google Scholar 

  • Boyan, B., Dereszewski, G., Hinman, B., Florence, M. and Griffith, G. (1982). In Fifth International Workshop on Calcified Tissues, Kiryat Anavim, Israel, Excerpta Medica, Amsterdam, 12–17

    Google Scholar 

  • Boyan, B. D., Howell, D. S., Pita, J. C., Blanco, L. and Cieslak, S. (1988). Characterization of a calcification induced in epiphyseal cartilage extracellular fluid. J. Biol. Chem., Bone, 9, 185–94

    Google Scholar 

  • Boyan, B. D., Landis, W. J., Knight, J., Dereszewski, G. and Zeagler, J. (1984). Microbial hydroxyapatite formation as a model of Scanning Electron Microsc., 4, 1793–1800

    Google Scholar 

  • Boyan, B. D., Schwartz, Z., Swain, L. D., Carnes, D. L., Jr and Zislis, T. (1989). Differential expression of phenotype by reserve zone and growth region chondrocytes in vitro. Bone, in press

    Google Scholar 

  • Boyan, B. D., Swain, L. and Renthal, R. (1986). Proton transport by calcifiable proteolipids. In Cell Mediated Calcification and Matrix Vesicles (ed. S. Y. Ali), Elsevier Bioscience BV, 199–204

    Google Scholar 

  • Boyan-Salyers, B. D. (1981). In The Chemistry and Biology of Mineralized Connective Tissues (ed. A. Veis), Elsevier-North Holland, 539–42

    Google Scholar 

  • Boyan-Salyers, B. D. and Boskey, A. L. (1981). Relationship between proteolipids and calcium-phospholipid-phosphate complexes in Bacterionema matruchotii calcification. Calcif. Tissue Intl., 30, 167–74

    Google Scholar 

  • Boyan-Salyers, B. D., Vogel, J., Riggan, L., Summers, F. and Howell, R. (1978). Application of a microbial model to biologic calcification. Metab. Bone Dis. Rel. Res., 1, 143–7

    Google Scholar 

  • Brighton, C. T. and Hunt, R. M. (1978). Electron microscopic pyroantimonate studies of matrix vesicles and mitochondria in the rachitic growth plate. Metab. Bone Dis. Rel. Res., 1, 199–204

    Google Scholar 

  • Chin, J. E., Schalk, E. M., Kemick, M. L. S. and Wuthier, R. E. (1986). Effect of synthetic human parathyroid hormone on the levels of alkaline phosphatase activity and formation of alkaline phosphatase-rich matrix vesicles by primary cultures of chicken epiphyseal growth plate chondrocytes. Bone Mineral, 1, 427–36

    Google Scholar 

  • Cornell, R. B. and Horwitz, R. F. (1980). Apparent coordination of the biosyntheses of lipids in cultured cells: its relationship to the regulation of membrane sterol phospholipid ration and cell cycling. J. Cell. Biol., 86, 810–19

    Google Scholar 

  • Cullis, P. R., Hope, M. J., de Kruijff, B., Verkleij, A. J. and Tilcock, C. P. S. (1985). In Phospholipids and Cellular Regulation (ed. J. F. Kuo), vol. I, CRC Press, Boca Raton, pp. 1–37

    Google Scholar 

  • Dirkson, T. R. and Marinetti, G. V. (1970). Lipids of bovine enamel and dentine and human bone. Calcif. Tiss. Res., 6, 1–10

    Google Scholar 

  • Dmitrovsky, E. and Boskey, A. L. (1985). Calcium-acidic phospholipid-phosphate complexes in human atherosclerotic aortas. Calcif. Tiss. Intl., 37, 121–5

    Google Scholar 

  • Eanes, E. D. and Hailer, A. W. (1985). Liposome-mediated calcium phosphate formation in metastable solutions. Calcif. Tiss. Intl., 37, 390–4

    Google Scholar 

  • Eanes, E. D. and Hailer, A. W. (1987). Calcium phosphate precipitation in aqueous suspensions of phosphatidylserine-containing anionic liposomes. Calcif Tiss. Intl., 40, 43–8

    Google Scholar 

  • Eanes, E. D., Hailer, A. W. and Costa, J. L. (1984). Calcium phosphate formation in aqueous suspensions of multilamellar liposomes. Calcif. Tiss. Intl., 36, 421–30

    Google Scholar 

  • Eisenberg, E., Wuthier, R. E., Frank, R. B. and Irving, J. T. (1970) Time study of in vivo incorporation of 32P orthophosphate into phospholipids of chicken epiphyseal tissues. Calcif. Tiss. Res., 6, 32–48

    Google Scholar 

  • Elgavish, A., Rifkind, J. and Saktor, B. (1983). In vitro effects of vitamin D3 on the phospholipids of isolated renal brush border membranes. J. Membr. Biol., 72, 85–91

    Google Scholar 

  • Elsbach, P., Weiss, J., and Kao, L. (1985). The role of intramembrane Ca2+ in the hydrolysis of the phospholipids of Escherichia coli by Ca2+ dependent phospholipase. J. Biol. Chem., 260, 1618–22

    Google Scholar 

  • Enlow, D. H. and Conklin, J. L. (1964). A study of lipid distribution in compact bone. Anat. Rec., 148, 279

    Google Scholar 

  • Ennever, J., Riggan, L. J. and Vogel, J. J. (1984). Proteolipid and collagen calcification in vitro. Cytobiol, 39, 155–6

    Google Scholar 

  • Ennever, J., Vogel, J. J. and Levy, B. M. (1974). Lipid and bone matrix calcification in vitro. Proc. Soc. Exp. Biol. Med., 145, 1386–8

    Google Scholar 

  • Ennever, J., Vogel, J. J., Rider, L. J. and Boyan-Salyers, B. D. (1976). Microbiologic calcification by proteolipid. Proc. Soc. Exp. Biol. Med., 152, 147–50

    Google Scholar 

  • Ennever, J., Vogel, J. J. and Riggan, L. J. (1978). Phospholipids of a bone matrix calcification nucleator. J. Dent. Res., 57, 731–4

    Google Scholar 

  • Enoch, H. G. and Strittmatter, P. (1979). Formation and properties of 1000 A diameter, single-bilayer phospholipid vesicles. Proc. Natl. Acad. Sci. U.S., 76, 145–9

    Google Scholar 

  • Escarot-Charrier, B., Glorieux, F. H., van der Rest, M. and Pereira, G. (1983). Osteoblasts isolated from mouse calvariae initiate matrix mineralisation in culture. J. Cell. Biol., 96, 639–43

    Google Scholar 

  • Farley, J. R. and Jorch, U. M. (1983). Differential effects of phospholipids on skeletal alkaline phosphatase (EC3.1.3.1) activity in extracts, in situ and in circulation. Arch. Biochem. Biophys., 22, 477–88

    Google Scholar 

  • Fincham, A. G., Burkland, G. A. and Shapiro, I. M. (1972). Lipophilia of enamel matrix. A chemical investigation of the neutral lipids and lipophilic proteins of enamel. Calcif. Tiss. Res., 9, 247–59

    Google Scholar 

  • Folch-Pi, J. and Stoffyn, P. J. (1972). Proteolipids from membrane systems. Anals. N.Y. Acad. Sci., 195, 86–107

    Google Scholar 

  • Fraley, R., Wilschut, J., Duzgunes, N., Smith, C. and Papahadjopoulos, R. (1980). Studies on the mechanism of membrane fusion, role of phosphate in promoting calcium induced fusion of phospholipid vesicles. Biochem., 19, 6021–9

    Google Scholar 

  • Fujiwara, T., Katsura, N. and Kawanura, M. (1981). Study of protease associated with matrix vesicles. J. Dent. Res., 60B, 1232 (abstract)

    Google Scholar 

  • Gains, N. and Hauser, H. (1982). Characterisation of small unilamellar vesicles produced in unsonicated phosphatidic acid and phosphatidylcholine-phosphatidic acid dispersions by pH adjustments. Biochim. Biophys. Acta., 731, 31–6

    Google Scholar 

  • Glaser, J. H. and Conrad, H. E. (1981). Formation of matrix vesicles by cultured chick embryo chondrocytes. J. Biol. Chem., 256, 12607–11

    Google Scholar 

  • Goldberg, M. and Escaig, F. (1984). An autoradiographic study of the in vivo incorporation of [3H]-palmitic acid into the dentine and enamel lipids of rat incisors, with a comparison of rapid-freezing freeze-substitution fixation and aldehyde fixation. Arch. Oral. Biol., 29, 691–5

    Google Scholar 

  • Goldberg, M. and Escaig, F. (1987). Rapid freezing and malachite green-acrolein-osmium tetroxide freeze-substitution fixation improve visualization of extracellular lipids in rat incisor pre-dentin and dentin. J. Histochem. Cytochem., 35, 427–33

    Google Scholar 

  • Goldberg, M. and Septier, D. (1985). Improved lipid preservation by malachite green-glutaraldehyde fixation in rat incisor predentine and dentine. Arch. Oral Biol., 10, 717–726

    Google Scholar 

  • Goldberg, M., Lelous, M., Escaig, F. and Boudin, M. (1983). Lipids in the developing enamel of the rat incisor, parallel histochemical and biochemical investigation. Histochem., 78, 145–56

    Google Scholar 

  • Goldberg, M., Escaig, F. and Septier, D. (1984). In Tooth Enamel IV (eds. R. W. Fearnhead and S. Suga), Elsevier Science, Amsterdam 125–30

    Google Scholar 

  • Golub, E. E., Schattschneider, S. C., Berthold, P., Burke, A. and Shapiro, I. (1983).

    Google Scholar 

  • Induction of chondrocyte vesiculation in vitro. J. Biol. Chem., 258, 616–21

    Google Scholar 

  • Hauser, H. (1982). Methods of preparation of lipid vesicles: assessment of their suitability for drug encapsulation. Trends Pharmacol. Sci., 3, 274–7

    Google Scholar 

  • Hauser, H. and Phillips, M. C. (1979). Interactions of the polar groups of phospholipid bilayer membranes. Progr. Surface Membr. Sci., 13, 297–413

    Google Scholar 

  • Hauser, H., Darke, A. and Phillips, M. C. (1976). Ion-binding to phospholipids. Interaction of calcium with phosphatidyl serine. Eur. J. Biochem., 62, 335–44

    Google Scholar 

  • Haynes, H., Boyan, B., Hinman, B. and Leal, D. (1982). Proteolipid isolated from rat incisor dentine and predentine matrix vesicles. J. Dent. Res., 61, 193–5

    Google Scholar 

  • Hendrickson, H. S. and Fullington, J. G. (1965). Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidyl serine and triphos-phoinositide. Biochem., 4, 1599–605

    Google Scholar 

  • Hirschman, A., Deutsch, D., Hirschman, M., Bab, I. A., Sela, J. and Muhlrad, A. (1983). Neutral protease activities in matrix vesicles from bovine fetal alveolar bone and dog osteosarcoma. Calcif. Tiss. Intl., 35, 791–7

    Google Scholar 

  • Holmes, R. P., Mahfouz, M., Travis, B. D., Yoss, N. L. and Keenan, M. J. (1983). The effect of membrane lipid composition on the permeability of membranes to Ca2+. Ann. N. Y. Acad. Sci., 414, 44–56

    Google Scholar 

  • Holwerda, D. L., Ellis, P. D. and Wuthier, R. E. (1981). Carbon-13 and phosphorus-31 nuclear magnetic resonance studies on the interaction of calcium with phosphatidylserine. Biochem., 20, 814–23

    Google Scholar 

  • Howell, D. S., Blanco, L., Pita, J. C. and Muniz, O. (1978). Further characterization of a nucleational agent in hypertrophic cell extracellular cartilage fluid. Metab. Bone Dis. Rel. Res., 1,155-61

    Google Scholar 

  • Hubscher, G. (1962). VI. The effect of metal ions on the incorporation of L-serine into phosphatidylserine. Biochim. Biophys. Acta, 57, 551–61

    Google Scholar 

  • Hsu, H. T. and Anderson, H. C. (1977). A simple and defined method of studying calcification by isolated matrix vesicles. Effect of ATP and vesicle phosphatase. Biochim. Biophys. Acta, 500, 162–72

    Google Scholar 

  • Irving, J. T. (1958). A histologic stain for newly calcified tissue. Nature, 181, 704–5

    Google Scholar 

  • Irving, J. T. (1959). A histologic staining method for sites of calcification in teeth and bone. Arch. Oral Biol., 1, 89–96

    Google Scholar 

  • Irving, J. T. (1963). The sudanophil material at sites of calcification. Arch. Oral Biol., 8, 735–45

    Google Scholar 

  • Joos, R. W. and Carr, C. W. (1967). The binding of calcium to mixtures of phospholipids. Proc. Soc. Exp. Biol. Med., 124, 126–8

    Google Scholar 

  • Katchburian, E. (1973). Membrane-bound bodies as initiators of mineralization of dentine. J. Anat., 116, 285–302

    Google Scholar 

  • Katsura, N. and Yamada, K. (1986). Isolation and characterization of a metalloprotease associated with chicken epiphyseal cartilage matrix vesicles. Bone., 7, 137–43

    Google Scholar 

  • Katsura, N., Sakata, M., Fujiwara, T., Kawamura, M. and Tomita, K. (1980). Degradation of cartilage proteoglycan by matrix vesicles. J. Dent. Res., 59B, 920

    Google Scholar 

  • Kohler, S. J. and Klein, M. (1977). Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors. Biochemistry, 16, 519–27

    Google Scholar 

  • Kumegawa, M., Ikeda, E., Tanaka, S., Haneji, T. J., Yora, T., Sakagishi, Y., Minami, N. and Hiramatsu, M. J. (1984). The effects of Prostaglandin E2, parathyroid hormone, 1, 25 dihydroxycholecalciferol, and cyclic nucleotide analogs on alkaline phosphatase activity in osteoblastic cells. Calcif. Tiss. Intl., 36, 72–6

    Google Scholar 

  • Lelous, M., Boudin, D., Salomon, S. and Polonvski, J. (1982). The affinity of type I collagen for lipid in vivo. Biochim. Biophys. Acta, 708, 26–32

    Google Scholar 

  • Low, M. G., and Zilvermat, D. B. (1980). Role of phosphatidylinositol in attachment of alkaline phosphatase to membranes. Biochem., 19, 390–5

    Google Scholar 

  • Majeska, R. J., Holwerda, D. L., and Wuthier, R. E. (1979). Localization of phosphatidylserine in isolated chick epiphyseal cartilege matrix vesicles with Trinitrobenzenesulfonate. Calcif. Tiss. Intl., 27, 41–5

    Google Scholar 

  • Mann, S., Hannington, J. P. and Williams, R. J. P. (1986). Phospholipid vesicles as a model system for biomineralization. Nature, 324, 565–7

    Google Scholar 

  • Manzoli, F. A. and Gelli, M. (1968). Quantitative determination of lipids in dental pulp (bos taurus) during development. Arch. Oral. Biol, 13, 705–12

    Google Scholar 

  • Matthews, J. L., Martin, J. H., Sampson, H. W., Kunin, A. S. and Roan, J. H. (1970). Mitochondrial granules in the normal and rachitic rat epiphyses. Calcif. Tiss. Res., 5, 91–9

    Google Scholar 

  • Matsumoto, T., Kawanobe, Y., Morita, K. and Ogata, E. (1985). Effect of 1,25-Dihydroxyvitamin D3 on phospholipid metabolism in a clonal osteoblast-like rat osteogenic sarcoma cell line. J. Biol. Chem., 260, 13704–9

    Google Scholar 

  • Meltzer, E., Weinreb, S., Bellorin-Font, E. and Hruska, K. A. (1982). Parathyroid hormone stimulation of renal phosphoinositide metabolism is a cyclic nucleotide-independent effect. Biochim. Biophys. Acta, 712, 258–304

    Google Scholar 

  • Mont, M. A., Boskey, A. L., Ryaby, J. T., Mularchuk, P., Bendo, J., diCarlo, E. and Binderman, I. (1987). Application of a culture system for analysis of differentiation and mineralization of mesenchymally-derived cells. Orthopaed. Trans., 33rd ORS, 440 (abstract)

    Google Scholar 

  • Murphree, S., Hsu, H. T. and Anderson, H. C. (1982). In vitro formation of crystalline apatite by matrix vesicles isolated from rachitic rat epiphyseal cartilage. Calcif. Tiss. Intl., 34, S62-S68

    Google Scholar 

  • Nayar, R., Hope, M. J. and Cullis, P. R. (1982). Phospholipids as adjuncts for calcium-ion stimulated release of chromaffin granule contents-implications for mechanisms of exocyto-sis. Biochem., 21, 4583–9

    Google Scholar 

  • Nelson, D. H. (1980). Corticosteroid-induced changes in phospholipid membranes as mediators of their action. Endocrin. Rev., 1, 180–99

    Google Scholar 

  • Neufeld, E. B. and Tonna, E. A. (1987). Tritiated inositol autoradiographic studies of Phosphatidylinositol syntheses and distribution in mouse skeletal/dental tissues. Anat. Rec., 218, 98 (abstract)

    Google Scholar 

  • Newton, C., Pangborn, W., Nir, S. and Papahadjopoulos, D. (1978). Specificity of Ca. Biochim. Biophys. Acta, 506, 281–5

    Google Scholar 

  • Ngoma, Z. and Davis. R. (1976). Mineralization et induction crystalline in vitro par les lipides extraits des l’os compact boivin. Path. Biol., 24, 307–11

    Google Scholar 

  • O’Doherty, P. J. A. (1979). 1,25 Dihydroxyvitamin D3 increases the activity of the intestinal phosphatidylcholine deacylation-reacylation cycle. Lipids, 14, 75–7

    Google Scholar 

  • Odutuga, A. A. and Prout, R. E. S. (1974). Lipid analysis of human enamel and dentine. Arch. Oral Biol., 19, 729–31

    Google Scholar 

  • Odutuga, A. A., Prout, R. E. S. and Hoare, R. J. (1975). Hydroxyapatite precipitation in vitro by lipids extracted from mammalian. Arch. Oral Biol., 20, 311–15

    Google Scholar 

  • Op den Kamp, J. A. F. (1979). Lipid asymmetry in membranes. Ann. Rev. Biochem., 48, 47–91

    Google Scholar 

  • Papahadjopoulos, D. (1974). Cholesterol and cell membrane function: A hypothesis concerning the etiology of atherosclerosis. J. Theor. Biol., 43, 329–37

    Google Scholar 

  • Peress, N. S., Anderson, H. C. and Sajdera, S. W. (1974). The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif. Tiss. Res., 14, 275–81

    Google Scholar 

  • Primes, K. J., Sanchez, R. A., Metzner, E. K. and Pazel, K. M. (1982). Large scale purification of phosphatidylcholine from egg yolk phospholipids by column chromatogra-phy on hydroxyapatite prepared by the Tiselius method. J. Chromat., 236, 519–22

    Google Scholar 

  • Prout, R. E. S. and Odutuga, A. A. (1974a). Lipid composition of dentine and enamel of rats maintained on a diet deficient in essential fatty acids. Arch. Oral Biol., 19, 725–8

    Google Scholar 

  • Prout, R. E. S. and Odutuga, A. A. (1974b). The effects on the lipid composition of enamel and dentine of feeding a corn oil supplement to rats deficient in essential fatty acids. Arch. Oral Biol., 19, 955–8

    Google Scholar 

  • Prout, R. E. S. and Odutuga, A. A. (1974c). In vitro incorporation of [1-14C-] linoleic acid into the lipids of enamel and dentine of normal and essential fatty acid deficient rats. Arch. Oral Biol., 19, 1167–70

    Google Scholar 

  • Prout, R. E. S., Odutuga, A. A. and Tringe, F. C. (1973). Lipid analysis of rat enamel and dentine. Arch. Oral Biol., 18, 373–80

    Google Scholar 

  • Raggio, C. L., Boyan, B. D. and Boskey, A. L. (1986). In vivo hydroxyapatite formation induced by lipids. J. Bone Mineral Res., 1, 409–15

    Google Scholar 

  • Rakhimov, M. M., Mad’yarow, Sh. R., Kholodkova, T. P., Babaev, M. U., Rashidova, S. Sh., Kalendareva, T. I., Almatov, K. T., Mirasalikhova, N. M. and Mirkhodzhaev,

    Google Scholar 

  • U. Z. (1978). Influence of calcium ions on the enzymatic hydrolysis of phospholipids as a function of the physical state of the substrate. Biokhimiya, 43, 433–45

    Google Scholar 

  • Reith, E. J. (1983). A model for transcellular transport of calcium based on membrane fluidity and movement of calcium carriers within the more fluid microdomains of the plasma membrane. Calcif. Tiss. Intl., 35, 129–34

    Google Scholar 

  • Rifas, L., Shen, V. and Mitchell, V. (1982). Selective emergence of differentiated chondro-cytes during serum-free culture of cells derived from fetal rat calvaria. J. Cell Biol., 92, 493–504

    Google Scholar 

  • Ritter, N. M. and Boyan-Salyers, B. D. (1980). A comparison of proteolipid concentration and calcification in normal and rachitic chick epiphyseal cartilage. Fed. Proc., 39, 661 (abstract)

    Google Scholar 

  • Rossignol., M., Uso, T. and Thomas, P. (1985). Relationship between fluidity and ionic permeability of bilayers from natural mixtures of phospholipids. J. Membr. Biol., 87, 269–75

    Google Scholar 

  • Sampath, T. K., Wientroub, S. and Reddi, A. H. (1984). Extracellular matrix proteins involved in bone induction are vitamin D dependent. Biochem. Biophys. Res. Commun., 124, 829–35

    Google Scholar 

  • Schlesinger, M. (1981). Proteolipids. Ann. Rev. Biochem., 50, 193–206

    Google Scholar 

  • Schuster, G. S., Dirksen, T. R. and Harms, W. S. (1975). Effect of exogenous lipid on lipid syntheses by bone and bone cell culture. J. Dent. Res., 54, 131–9

    Google Scholar 

  • Seelig, J. and Macdonald, P. M. (1987). Phospholipids and proteins in Biological Membranes. 2H NMR as a method to study structure, dynamics and interactions. Acc. Chem. Res., 20, 221–8

    Google Scholar 

  • Shapiro, I. M. (1970a). The association of phospholipids with inorganic bone. Calcif. Tiss. Res., 5, 13–20

    Google Scholar 

  • Shapiro, I. M. (1970b). The phospholipids of mineralized tissues. I. Mammalian compact bone. Calcif. Tiss. Res., 5, 21–9

    Google Scholar 

  • Shapiro, I. M. and Greenspan, J. S. (1969). Are mitochondria directly involved in Biological Mineralization? Calcif. Tiss. Res., 3, 100–2

    Google Scholar 

  • Shapiro, I. M. and Wuthier, R. E. (1966). A study of the phospholipids of bovine dental tissues II. Developing bovine dental pulp. Arch. Oral Biol., 11, 501–12

    Google Scholar 

  • Simon, D. R., Berman, I. and Howell, D. S. (1973). Relationship of extracellular matrix vesicles to calcification in normal and healing rachitic epiphyseal cartilage. Anat. Rec., 176, 167–80

    Google Scholar 

  • Singer, S. J. and Nicholson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720–31

    Google Scholar 

  • Stubbs, C. D. and Smith, A. D. (1984). The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta, 779, 89–137

    Google Scholar 

  • Swain, L. D. and Boyan, B. D. (1988). Ion translocating properties of calcifiable proteolipids. J. Dent. Res., 67, 526–30

    Google Scholar 

  • Takazoe, I., Vogel, J. J. and Ennever, J. (1970). Calcium hydroxyapatite nucleation by lipid extract of Bacterionema Matruchotti. J. Dent. Res., 49, 395–8

    Google Scholar 

  • Trauble, H. (1973). Phase transitions in lipids. Biomembranes, 3, 197–227

    Google Scholar 

  • Tyson, C. A., Zande, H. V. and Green, D. E. (1976). Phospholipids as ionophores J. Biol. Chem., 251, 1326–32

    Google Scholar 

  • Vaananen, H. K. (1980). Calcium incorporation in matrix vesicles isolated from chicken epiphyseal cartilage. Calcif. Tiss. Intl., 30, 227–32

    Google Scholar 

  • Vannanen, H. K., Morris, D. C. and Anderson, H. C. (1983). Calcification of cartilage matrix in chondrocyte cultures derived from rachitic rat growth plate cartilage. Metab. Bone Dis. Rel. Res., 5, 87–92

    Google Scholar 

  • Vogel, J. J. and Boyan-Salyers, B. D. (1976). Acidic lipids associated with the local mechanism of calcification. Clin. Orthop., 118, 230–41

    Google Scholar 

  • Vogel, J. J. and Ennever, J. (1971). The role of lipoprotein in the intracellular hydroxyapatite formation in Bacterionema Matruchotti. Clin. Orthoped. Rel. Res., 78, 218–22

    Google Scholar 

  • Vogel, J. J., Campbell, M. M. and Ennever, J. (1973). Calcification of a lysozyeinositol phosphatide. Proc. Soc. Exp. Biol. Med., 143, 677–81

    Google Scholar 

  • Warren, G. B., Toon, P. A., Birdsail, N. J. M., Lee, A. G. and Metcalfe, J. C. (1974). Titrations of the activity of pure adenosine triphosphate-lipid complexes. Biochem., 13, 5501–8

    Google Scholar 

  • Warschawsky, H. and Smith, C. E. (1974). Morphological classification of rat incisor ameloblasts. Anat. Rec., 179, 423–46

    Google Scholar 

  • Weibull, C., Christiansson, A. and Carlemalm, E. (1983). Extraction of membrane lipids during fixation dehydration and embedding of Acholeplasma Laidlawn-cells for electron microscopy. J. Microsc., 129, 201–7

    Google Scholar 

  • Wuthier, R. E. (1968). Lipids of mineralizing epiphyseal tissues in the bovine fetus. J. Lipid Res., 9, 68–78

    Google Scholar 

  • Wuthier, R. E. (1971). Zonal analysis of phospholipids in the epiphyseal cartilage and bone of normal and rachitic chickens and pigs. Calcif. Tiss. Res., 8, 36–53

    Google Scholar 

  • Wuthier, R. E. (1973). The role of phospholipids in biologic calcification. Clin. Orthoped., 90, 191–200

    Google Scholar 

  • Wuthier, R. E. (1977). Electrolytes of isolated epiphyseal chondrocytes, matrix vesicles, and extracellular fluid. Calcif. Tiss. Res., 23, 125–33

    Google Scholar 

  • Wuthier, R. E. (1982). The role of phospholipid-calcium-phosphate complexes in biological mineralization. In Anghileri, L. J. and A. M. Tuffet-Anghileri (eds), The Role of Calcium in Biological Systems, vol. I, CRC Press, Boca Raton, 41–70

    Google Scholar 

  • Wuthier, R. E. (1984). In Linde, A. (ed.) Dentin and Dentingenesis, vol. II, CRC Press, Boca Raton, 93–106

    Google Scholar 

  • Wuthier, R. E., Chin, J. E., Hale, J. E., Register, T. C., Hale, L. V. and Ishikawa, Y. (1985). Isolation and characterization of calcium accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture. J. Biol. Chem., 260, 15972–9

    Google Scholar 

  • Wuthier, R. E. and Cummins, J. W. (1974). In vitro incorporation of 3H serine into phospholipid of proliferating and calcifying epiphyseal cartilage and liver. Biochim. Biophys. Acta, 337, 50–9

    Google Scholar 

  • Wuthier, R. E. and Gore, S. (1977). Participation of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions. Evidence for Ca: Pi: acidic phospholipid complexes. Calcif. Tiss. Res., 24, 163–71

    Google Scholar 

  • Wuthier, R. E., Majeska, R. J. and Collins, G. M. (1977). Biosynthesis of matrix vesicles in epiphyseal cartilage. I. In vivo incorporation of 32P orthophosphate into phospholipids of chondrocyte, membrane and matrix vesicle fractions. Calcif. Tiss. Res., 23, 135–9

    Google Scholar 

  • Wuthier, R. E., Wians, F. H., Giancola, S. and Dragic, S. S. (1978). In vitro biosynthesis of phospholipids by chondrocytes and matrix vesicles of epiphsyseal cartilage. Biochem., 17, 1431–6

    Google Scholar 

  • Yaari, A. M., Shapiro, I. M. and Brown, C. E. K. (1982). Evidence that phosphatidylserine and inorganic phosphate may mediate transport during calcification. Biochem. Biophys. Res. Commun., 105, 778–84

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 The contributors

About this chapter

Cite this chapter

Boskey, A.L. (1989). Phospholipids and calcification. In: Hukins, D.W.L. (eds) Calcified Tissue. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09868-2_9

Download citation

Publish with us

Policies and ethics