Skip to main content

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

The actin molecule is one of nature’s most remarkable objects: its very ubiquity throughout eukaryotic biology and the tenacity of its structure in the face of aeons of evolutionary adaptation bespeak a fundamental functional characteristic that invites our curiosity. Actin stands at the crossroads where eukaryotes first diverged from our unicellular prokaryotic ancestors, a point when cells learned to replicate and package their genomic material and to divide into daughter cells. In the structural timescape, it was time to abandon rigid cell-walls and simple flagellar-based motility, and to invest the cytoplasm with the vast new organising potential afforded by the actin molecule. The essential utility of the actin molecule for the cyto-architect is that it can spontaneously assemble into long flexible filaments, from which bundles, cables and mesh-works can be constructed. Through such extended structures forces can be transmitted, sieves and boundaries assembled, and cell membranes buttressed. Add to this the capacity to alter in a controlled manner the pattern of interconnections and the cell acquires the means to move, change shape and perform mechanical work. It is our view that, once the actin molecule emerged at the dawn of the eukaryotes as a universal mechanochemical coupling unit, its structure remained virtually unaltered throughout evolution. Instead, other actin binding proteins evolved capable of modifying and controlling the behaviour of actin to meet new functional requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barden, J. A. and dos Remedios, G. G. (1984): The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy. J. Biochem., Tokyo, 96, 913–921

    CAS  Google Scholar 

  • Botstein, D. (in conversation, 1985)

    Google Scholar 

  • Chothia, C. (in conversation, 1984)

    Google Scholar 

  • dos Remedios, C. G., Miki, M. and Barden, J. (1987). Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J. Muscle Res. Cell Motil., 8, 97–117

    Article  PubMed  Google Scholar 

  • Egelman, E. (1985). The structure of the actin thin filament (a review). J. Muscle Res. Cell Motil., 6, 129–151

    Article  PubMed  CAS  Google Scholar 

  • Egelman, E. H., Frances, N. and DeRosier, D. J. (1982). F-actin is a helix with a random variable twist. Nature, 298, 131–135

    Article  PubMed  CAS  Google Scholar 

  • Estes, J. E., Seiden, L. A. and Gershman, L. C. (1987). Tight binding of divalent cations to monomeric actin. J. Biol. Chem., 262, 4952–4957.

    PubMed  CAS  Google Scholar 

  • Frieden, C. (1982). The Mg++-induced conformational change in rabbit skeletal muscle G-actin. J. Biol. Chem., 257, 2882–2886

    PubMed  CAS  Google Scholar 

  • Gershman, L. C., Seiden, L. A. and Estes, J. E. (1986). High affinity binding of divalent cation to actin monomer is much stronger than previously reported. Biochem. Biophys. Res. Commun., 135, 607–614

    Article  PubMed  CAS  Google Scholar 

  • Hambly, B. D., Barden, J. A., Miki, M. and dos Remedios, C. G. (1986). Structural and functional domains on actin. Bioessays, 4, 124–128

    Article  PubMed  CAS  Google Scholar 

  • Harrison, S. C., Olson, A.J., Schutt, C. E., Winkler, F. K. and Bricogne, G. (1978). Tomato bushy stunt virus at 2.9 angstroms resolution. Nature, 276, 368–373

    Article  PubMed  CAS  Google Scholar 

  • Hiromi, Y. and Hotta, Y. (1987). Actin gene mutations in Drosophila; heat shock activation in the indirect flight muscles. EMBO Jl, 4, 1681–1687

    Google Scholar 

  • Jacobson, G. and Rosenbusch, J. (1976). ATP binding to a protease-resistant core of actin. Proc. Natl Acad. Sci. USA, 73, 2742–2746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kabsch, W., Mannherz, H. G. and Suck, D. (1985). Three-dimensional structure of the complex of actin and DNase I at 4.5 Å resolution. EMBO Jl, 4, 2113–2118

    CAS  Google Scholar 

  • Karlik, C. C., Coutu, M. D. and Fyrberg, E. A. (1984). A nonsense mutation within the Act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscles. Cell, 38, 711–719

    Article  PubMed  CAS  Google Scholar 

  • Konno, K. (1988). G-Actin structure revealed by chymotryptic digestion. J. Biochem., 103, 386–392

    PubMed  CAS  Google Scholar 

  • Korn, E. D. (1982). Actin polymerization and its regulation by proteins from non-muscle cells. Physiol. Rev., 62, 672–725

    PubMed  CAS  Google Scholar 

  • Korn, E. D., Carlier, M.-F. and Pantaloni, D. (1988). Actin polymerization and ATP hydrolysis. Science, N.Y., 238, 638–644

    Article  Google Scholar 

  • Leavitt, J., Bushar, G., Kakunaga, T., Hamada, H., Hirakawa, T., Goldman, D. and Merril, C. (1982). Variations in expression of mutant? actin accompanying incremental increases in human fibroblast tumorigenicity. Cell, 28, 259–268

    Article  PubMed  CAS  Google Scholar 

  • Lindberg, U., Schutt, C. E., Hellsten, E., Tjader, A.-C. and Hult, T. (1988). The use of poly-L-proline sepharose in the isolation of profilin and profilin-actin complexes. Biophys. Biochim. Acta., 967, 391–400

    Article  CAS  Google Scholar 

  • Martin, Debra J. and Rubenstein, Peter A. (1987). Alternate pathways for removal of the class II actin initiator methionine. J. Biol. Chem., 262, 6350–6356

    PubMed  CAS  Google Scholar 

  • Miki, M. and Wahl, P. (1985). Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue. Biochim. Biophys. Acta, 828, 188–195

    Article  PubMed  CAS  Google Scholar 

  • Moir, A. J. G. and Levine, B. A. (1986). Protein cognitive sites on the surface of actin. A proton NMR study. J. Inorg. Biochem., 28, 271–278

    Article  PubMed  CAS  Google Scholar 

  • Mornet, D. and Ue, K. (1984). Proteolysis and structure of skeletal muscle actin. Proc. Natl Acad. Sci. USA, 82, 3680–3684

    Article  Google Scholar 

  • Nowak, E., Strzelecka-Golaszewka, H. and Goody, R. (1988). Kinetics of nucleotide and metal ion interaction with G-actin. Biochemistry, 27, 1785–1792

    Article  PubMed  CAS  Google Scholar 

  • Olson, A. J. (1984). Tomato Bushy Stunt Virus (a film), Palmer Film Studios, 1475 Old Country Road, Belmont, CA 94002, USA

    Google Scholar 

  • Oosawa, F. (1983). Macromolecular assembly of actin. In Stracher, A. (Ed.), Muscle and Nonmuscle Motility, Vol. 1. Academic Press, New York, London, pp. 151–211

    Chapter  Google Scholar 

  • Pollard, T. D. (1986). Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol., 103, 2747–2754

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D. and Cooper, J. A. (1986). Actin and actin-binding proteins: A critical evaluation of mechanisms and functions. Ann. Rev. Biochem., 55, 987–1035

    Article  PubMed  CAS  Google Scholar 

  • Ponder, J. W. and Richards, F. M. (1987). Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol., 193, 775–791

    Article  PubMed  CAS  Google Scholar 

  • Sakabe, N., Sakabe, K., Saski, K., Kondo, H., Ema, T., Kamiya, N. and Matsushima, M. (1983). Structure of actin-DNase I at low resolution. J. Biochem., 93, 299–302

    PubMed  CAS  Google Scholar 

  • Sarma, R., Ramirez, F., Narayanan, P., McKeever, B. and Marecek, J. F. (1979). Molecular structure of a stable 2,4-dinitrophenoxide complex. A model for histidine and N-τ-methylhistidine coordination in MgATPase and their uncouplers. J. Am. Chem. Soc., 101 (17), 5015–5019

    Article  CAS  Google Scholar 

  • Schutt, C. (1987). Movement on the Aufbaubahn. Nature, 325, 757–758

    Article  PubMed  CAS  Google Scholar 

  • Schutt, C. E., Strauss, N., Morikawa, K. and Lindberg, U. (1986). Crystallographic studies on the profilin: actin complex. In Yanagida, T. (Ed.), Actin: Structure and Functions. University of Tokyo Press, pp. 10–17

    Google Scholar 

  • Schutt, C. E., Lindberg, U., Myslik, J. and Strauss, N. (1989). Molecular packing in profilin: actin crystals and its implications, J. Mol. Biol., in press

    Google Scholar 

  • Sigler, P. (in conversation, 1985)

    Google Scholar 

  • Solomon, Larry R. and Rubenstein, Peter A. (1987). Studies on the role of actin’s N-τ-methylhistidine using oligodeoxynucleotide-directed site-specific mutagenesis. J. Biol. Chem., 262, 11382–11388

    PubMed  CAS  Google Scholar 

  • Stock, A., Wylie, D. C., Mottonen, J. M., Lupas, A. N., Ninfa, E. G., Ninfa, A. J., Schutt, C. E. and Stock, J. B. (1988). Phospho-proteins involved in bacterial signal transduction. Cold

    Google Scholar 

  • Spring Harbor Symposium on Quantitative Biology on Sensory Transduction., 53, 49–57

    Google Scholar 

  • Stossel, T. P., Chaponnier, C., Ezzell, R. M., Hartwig, J. H., Janmey, P. A., Kwiatkowski, D. H., Lind, S. E., Smith, D. B., Southwick, F. S., Yin, H. L. and Zaner, K. S. (1985). Nonmuscle actin-binding proteins. Ann. Rev. Cell Biol., 1, 353–402

    Article  PubMed  CAS  Google Scholar 

  • Suck, D., Kabsch, W. and Mannherz, H. G. (1981). Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNaseI at 6 Å resolution. Proc. Natl Acad. Sci. USA, 78, 4319–4323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sussman, D. J., Sellers, J. R., Flicker, P., Laie, E. Y., Cannon, L. E., Szent-Gyorgyi, A. G. and Fulton, C. (1984). Actin of Naegleria gruberi. J. Biol. Chem., 259, 7349–7354

    PubMed  CAS  Google Scholar 

  • Sutoh, K. (1984). Actin-actin and actin-deoyribonuclease I contact sites in the actin sequence. Biochemistry, 23, 1942–1946

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckove, J., Leavitt, J., Kakunaga, T. and Weber, K. (1980). Coexpression of a mutant γ-actin and two normal β- and γ-cytoplasmic actins in a stably transformed human cell line. Cell, 22, 893–899

    Article  Google Scholar 

  • Wang, Y. (1985). Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol., 101, 597–602

    Article  PubMed  CAS  Google Scholar 

  • Weeds, A. (1982). Actin-binding proteins—regulators of cell architecture and motility. Nature, 296, 811–815

    Article  PubMed  CAS  Google Scholar 

  • Wegner, A. (1976). Head to tail polymerization of actin. J. Mol. Biol., 108, 139–147

    Article  PubMed  CAS  Google Scholar 

  • Zimmerle, C. T., Patane, K. and Frieden, C. (1987). Divalent cation binding to the high- and low-affinity sites on G-actin. Biochemistry, 26, 6542–6552

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The editor and contributors

About this chapter

Cite this chapter

Schutt, C.E., Lindberg, U. (1990). The Nature of the Actin Molecule. In: Squire, J.M. (eds) Molecular Mechanisms in Muscular Contraction. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09814-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09814-9_2

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09816-3

  • Online ISBN: 978-1-349-09814-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics