Skip to main content

A Quarter Century of Brain Dopamine Research

  • Chapter
Dopaminergic Systems and their Regulation

Abstract

The discovery of dopamine’s occurrence in mammalian brain took place in the late fifties, between the years 1957 and 1959. Until then, dopamine stood in the shadow of the two other, at that time more prominent, catecholamines, noradrenaline and adrenaline. Even the name “dopamine” was, at the time of the amine’s discovery in the mammalian brain, still new and little known; it seems to have been proposed in about 1951 by Sir Henry Dale (see footnote, p.443, in Blaschko, 1952).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andén, N.-E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.-A. and Larsson, K. (1964a). Demonstration and mapping out of nigrostriatal dopamine neurons. Life Sci., 3, 523–530.

    Article  PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K. and Larsson, K. (1965). Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat. Am. J. Anat., 116, 329–333.

    Article  PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U. (1966). Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol.scand., 67, 313–326.

    Article  Google Scholar 

  • Andén, N.-E., Ross, B.-E. and Werdinius, B. (1963). On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorimetric method. Life Sci., 2, 448–458.

    Article  Google Scholar 

  • Andén, N.-E., Ross, B.-E. and Werdinius, B. (1964b). Effects of chlorpromazine, haloperidol and reserpine on the level of phenolic acids in rabbit corpus striatum. Life Sci., 3, 149–158.

    Article  Google Scholar 

  • Barbeau, A. (1960). Preliminary observations on abnormal catecholamine metabolism in basal ganglia diseases. Neurology, 10, 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Barbeau, A., Murphy, C.F. and Sourkes, T.L. (1961). Excretion of dopamine in diseases of basal ganglia. Science, 133, 1706–1707.

    Article  PubMed  CAS  Google Scholar 

  • Barbeau, A., Sourkes, T.L. and Murphy, G.F. (1962). Les catécholamines dans la maladie de Parkinson. In Monoamines et Système Nerveux centrale. (ed. J.de Ajuriaguerra). Georg, Genève and Masson, Paris.

    Google Scholar 

  • Barger, G. and Dale, H.H. (1910). Chemical structure and sympathomimetic action of amines. J.Physiol., 41, 19–59.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barger, G. and Ewins, A.J. (1910). Some phenolic derivatives of β-phenylethylamine. J.Chem.Soc.(London), 97, 2253–2261.

    Article  CAS  Google Scholar 

  • Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K. and Seitelberger, F. (1973). Brain dopamine and the syndrome of Parkinson and Huntington. Clinical and morphological and neurochemical correlations. J.neurol.Sci., 20, 415–455.

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer, H. and Hornykiewicz, O. (1965). Wirkung von Phenothiazinderivaten auf den Dopamin- (3-Hydroxytyramin-) Stoffwechsel im Nucleus caudatus. Arch.exp.Path.Pharmak., 251, 135.

    Article  Google Scholar 

  • Bertler, A., Carlsson, A., Rosengren, E. and Waldeck, B. (1958). A method for the fluorimetric determination of adrenaline, noradrenaline, and dopamine in tissues. Kungl.fysiogr.sällsk.Lund förh., 28, 121–123.

    CAS  Google Scholar 

  • Bertler, A. and Rosengren, E. (1959a). Occurrence and distribution of dopamine in brain and other tissues. Experientia, 15, 10–11.

    Article  PubMed  CAS  Google Scholar 

  • Bertler, A. and Rosengren, E. (1959b). Occurrence and distribution of catechol amines in brain. Acta physiol.scand., 47, 350–361.

    PubMed  CAS  Google Scholar 

  • Bertler, A. and Rosengren, E. (1959c). On the distribution in brain of monoamines and of enzymes responsible for their formation. Experientia, 15, 382.

    Article  PubMed  CAS  Google Scholar 

  • Birkhäuser, H. (1940). Fermente im Gehirn geistig normaler Menschen. Helv.Chim.Acta, 23, 1071–1086.

    Article  Google Scholar 

  • Birkmayer, W. and Hornykiewicz, O. (1961). Der L-Dioxyphenylalanin (= DOPA)- Effekt bei der Parkinson-Akinese. Wien.Klin.Wschr., 73, 787–788.

    PubMed  CAS  Google Scholar 

  • Birkmayer, W. and Hornykiewicz, O. (1962). Der L-Dioxyphenylalanin (=DOPA)- Effekt beim Parkinson-Syndrom des Menschen: Zur Pathogenese und Behandlung der Parkinson-Akinese. Arch.Psychiat. Nervenkr., 203, 560–574.

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer, W. and Hornykiewicz, O. (1964). Weitere experimentelle Untersuchungen über L-DOPA beim Parkinson-Syndrom und Reserpin-Parkinsonismus. Arch.Psychiat.Nervenkr., 206, 367–381.

    Article  CAS  Google Scholar 

  • Blaschko, H. (1939). The specific action of L-dopa decarboxylase. J.Physiol., 96, 50P–51P.

    CAS  Google Scholar 

  • Blaschko, H. (1952). Amine oxidase and amine metabolism. Pharmacol. Rev., 4, 415–458.

    PubMed  CAS  Google Scholar 

  • Blaschko, H. (1957). Metabolism and storage of biogenic amines. Experientia, 13, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Blaschko, H. and Chrusciel, T.L. (1960). The decarboxylation of amino acids related to tyrosine and their awakening action in reserpine-treated mice. J.Physiol., 151, 272–284.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blaschko, H., Richter, D. and Schlossmann, H. (1937). The oxidation of adrenaline and other amines. Biochem.J., 31, 2187–2196.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bloom, F.E., Costa, E. and Salmoiraghi. G.C. (1965). Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. J.Pharmacol., 150, 244–252.

    CAS  Google Scholar 

  • Bowman, R.L. (1959). Fluorescence and its measurement. Pharmacol. Rev., 11, 256–261.

    PubMed  CAS  Google Scholar 

  • Bowman, R.L., Caulfield, P.A. and Udenfriend, S. (1955). Spectro-photofluorometric assay through the ultraviolett and visible range. Science, 122, 32–33.

    Article  PubMed  CAS  Google Scholar 

  • Cardot, J. (1963). Sur la présence de la dopamine dans le système nerveux et ses relations avec la Décarboxylation de la dioxyphénylalanine chez le Mollusque Helix pomatio. C.R.Acad.Sci., Paris, 257, 1364–1366.

    CAS  Google Scholar 

  • Carlsson, A. (1959). The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol.Rev., 11, 490–493.

    PubMed  CAS  Google Scholar 

  • Carlsson, A. and Hillarp, N.-A. (1962). Formation of phenolic acids in brain after administration of 3,4-dihydroxyphenylalanine. Acta physiol.scand., 55, 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A. and Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta pharm.tox., 20, 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M. and Magnusson, T. (1957). 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180, 1200.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T. and Waldeck, B. (1958). On the presence of 3-hydroxytyramine in brain. Science, 127, 471.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A. and Waldeck, B. (1958). A fluorimetric method for the determination of dopamine (3-hydroxytyramine). Acta physiol. scand., 44, 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Cotzias, G.C., Van Woert, M.H. and Schiffer, I.M. (1967). Aromatic amino acids and modification of Parkinsonism. New Engl.J.Med., 276, 374–379.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Davis, R. (1961). A central action of 5-hydroxytryptamine and noradrenaline. Nature, 192, 1083–1084.

    Article  PubMed  CAS  Google Scholar 

  • Dagirmanjian, R., Laverty, R., Mantegazzini, P., Sharman, D.F. and Vogt, M. (1963). Chemical and physiological changes produced by arterial infusion of dihydroxyphenylalanine into one cerebral hemisphere of the cat. J.Neurochem., 10, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström, A. and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol.scand., 62, suppl. 232.

    Google Scholar 

  • Degkwitz, R., Frowein, R., Kulenkampff, C. and Mohs, U. (1960). Uber die Wirkungen des L-DOPA beim Menschen und deren Beeinflussung durch Reserpin, Chlorpromazin, Iproniazid und Vitamin B6. Klin.Wschr., 38, 120–123.

    Article  PubMed  CAS  Google Scholar 

  • Dengler, H. (1957). Über das Vorkommen von Oxytyramin in der Nebenniere. Arch.exp.Path.Pharmak., 231, 373–377.

    Article  CAS  Google Scholar 

  • Ehringer, H. and Hornykiewicz, O. (1960). Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin.Wschr., 38, 1236–1239.

    Article  PubMed  CAS  Google Scholar 

  • Eränkö, O. (1955). Distribution of fluorescing islets, adrenaline and noradrenaline in the adrenal medulla of the hamster. Acta endocr.(Kbh.), 18, 174–179.

    Google Scholar 

  • Ernst, E.A. (1967). Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia, 10, 316–323.

    Article  PubMed  CAS  Google Scholar 

  • Euler, U.S. von (1946). A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relations to adrenaline and noradrenaline. Acta physiol.scand., 12, 73–97.

    Article  Google Scholar 

  • Euler, U.S. von (1952). Noradrenaline. Symposium sur les hormones protéiques et dérivées des protéines. No.4, IIiéme Congrés International de Biochimie.SEDES; Paris, pp.39–55; quoted from: Blaschko, H. (1954) Pharmacol.Rev., 6, 23–28.

    Google Scholar 

  • Euler, U.S. von and Floding, I. (1955). A fluorimetric micromethod for differential estimation of adrenaline and noradrenaline. Acta physiol.scand., 33, suppl. 118, 45–56.

    Google Scholar 

  • Euler, U.S. von and Hamberg, U. (1949). Colorimetric determination of noradrenaline and adrenaline. Acta physiol.scand., 19, 74–84.

    Article  CAS  Google Scholar 

  • Euler, U.S. von, Hamberg. U. and Hellner, S. (1951). β-(3:4-Dihydroxyphenyl)ethylamine (hydroxytyramine) in normal human urine. Biochem., 49, 655–658.

    Google Scholar 

  • Everett, G.M. (1961). Some electrophysiological and biochemical correlates of motor activity and aggressive behavior. Neuro-Psychopharmacol., 2, 479–484.

    Google Scholar 

  • Everett, G.M. and Toman, J.E.P. (1959). Mode of action of Rauwolfia alkaloids and motor activity. In Biological Psychiatry. (ed.H. K.Masserman). Grune and Stratton, New York.

    Google Scholar 

  • Everett, G.M. and Wiegand, R.G. (1962). Central amines and behavioral states: a critique and new data. In Proc.1st Intern. Pharmacol.Meeting, vol. 8, 85–92. Pergamon Press, Oxford.

    Google Scholar 

  • Falck, B., Hillarp, N.-A., Thieme, G. and Torp, A. (1962). Fluorescence of catecholamines and related compounds condensed with formaldehyde. J.Histochem.Cytochem., 10, 348–354.

    Article  CAS  Google Scholar 

  • Feldberg, W. and Vogt, M. (1948). Acetylcholine synthesis in different regions of the central nervous system. J.Physiol., 107, 372–381.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fuxe, K. (1965). Evidence for the existence of monoamine neurons in the central nervous system. IV.Distribution of monoamine nerve terminals in the central nervous system. Acta physiol.scand., 64, suppl. 247.

    Google Scholar 

  • Fuxe, K., Hökfelt, T. and Ungerstedt, U. (1970). Morphological and functional aspects of central monoamine neurons. In International Rev. Neurobiology. vol. 13. (eds.C.C.Pfeiffer and J.R. Smythies). Academic Press, New York, London.

    Google Scholar 

  • Gerschenfeld, H.M. (1964). A non-cholinergic synaptic inhibition in the central nervous system of a mollusc. Nature, 203, 415–416.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, L.I. (1972). Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol.Rev., 24, 1–29.

    PubMed  CAS  Google Scholar 

  • Goldstein, M., Anagnoste, B., Battista, A.F., Owen, W.S. and Nakatani, S. (1969). Studies of amines in the striatum in monkeys with nigral lesions. The disposition, biosynthesis and metabolites of (3H) dopamine and (14C) serotonin in the striatum. J.Neurochem., 16, 645–653.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M., Anagnoste, B., Owen, W.S. and Battista, A.F. (1966). The effects of ventromedial tegmental lesions on the biosynthesis of catecholamines in the striatum. Life Sci., 5, 2171–2176.

    Article  CAS  Google Scholar 

  • Goodall, McC. (1951). Studies of adrenaline and noradrenaline in mammalian hearts and suprarenals. Acta physiol.scand., 24, suppl. 85.

    Google Scholar 

  • Gurd, M.R. (1937). The physiological action of dihydroxyphenylethylamine and sympatol. Quart.J.Pharm.Pharmacol., 10, 188–211.

    CAS  Google Scholar 

  • Hamet, R. (1931). Contribution a l’étude de la dihydroxyphényléthylamine. Arch.Int.Pharmacodyn.Thér., 40, 427–443.

    Google Scholar 

  • Herz, A. and Zieglgänsberger, W. (1968). The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Int. J.Neuropharmacol., 7, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Holtz, P. (1950). Über die sympathicomimetische Wirksamkeit von Gehirnextrakten. Acta physiol.scand., 20, 354–362.

    Article  PubMed  CAS  Google Scholar 

  • Holtz, P. and Credner, K. (1942). Die enzymatische Entstehung von Oxytyramin im Organismus und die physiologische Bedeutung der Dopadecarboxylase.Arch.exp.Path.Pharmak., 200, 356–388.

    Article  CAS  Google Scholar 

  • Holtz, P., Credner, K. and Kroneberg, G. (1947). Über das sympathicomimetische pressorische Prinzip des Harns (“Urosympathin”). Naunyn-Schmiedeb.Arch., 204, 228–243.

    Article  CAS  Google Scholar 

  • Holtz, P., Heise, R. and Lüdtke, K. (1938). Fermentativer Abbau von 1-Dioxyphenylalanin durch die Niere. Arch.exp.Path.Pharmak., 191, 87–118.

    Article  CAS  Google Scholar 

  • Hornykiewicz, O. (1958). The action of dopamine on the arterial pressure of the guinea pig. Brit.J.Pharmacol., 13, 91–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hornykiewicz, O. (1963). Die topische Lokalisation und das Verhalten von Noradrenalin und Dopamin (3-Hydroxytyramin) in der Substantia nigra des normalen und Parkinson kranken Menschen. Wien. klin.Wschr., 75, 309–312.

    PubMed  CAS  Google Scholar 

  • Hornykiewicz, O. (1964). Zur Frage des Verlaufs dopaminerger Neurone im Gehirn des Menschen. Wien.klin.Wschr., 76, 834–835.

    PubMed  CAS  Google Scholar 

  • Hornykiewicz, O. (1966). Dopamine (3-hydroxytyramine) and brain function. Pharmacol.Rev., 18, 925–964.

    PubMed  CAS  Google Scholar 

  • Hornykiewicz, O. (1971). Dopamine: its physiology, pharmacology and pathological neurochemistry. In Biogenic Amines and Physiological Membranes in Drug Therapy. (eds. J.H.Biel and L.G.Abbod). Part II. Dekker, New York.

    Google Scholar 

  • Hornykiewicz, O. (1973). Parkinson’s disease: from brain homogenate to treatment. Fed.Proc., 32, 183–190.

    PubMed  CAS  Google Scholar 

  • Kerkut, G.A. and Walker, R.J. (1961). The effects of drugs on the neurons of the snail Helix aspersa. Comp.Biochem.Physiol., 3, 143–160.

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G.A. and Walker, R.J. (1962). The specific chemical sensitivity of Helix nerve cells. Comp.Biochem.Physiol., 7, 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Krnjević, K. and Phillis, J.W. (1963). Actions of certain amines on cerebral cortical neurons. Brit.J.Pharmacol., 20, 471–490.

    PubMed  PubMed Central  Google Scholar 

  • Laverty, R. and Sharman, D.F. (1965). Modification by drugs of the metabolism of 3,4-dihydroxyphenylethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Brit.J.Pharmacol., 24, 759–772.

    PubMed  CAS  PubMed Central  Google Scholar 

  • MacIntosh, F.C. (1941). The distribution of acetylcholine in the peripheral and the central nervous system. J.Physiol., 99, 436–442.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mannich, C. and Jacobsohn, W. (1910). Über Oxyphenyl-alkylamine und Dioxyphenylalkylamine. Ber.Deut.Chem.Ges., 43, 189–197.

    Article  CAS  Google Scholar 

  • McDonald, R.H. and Goldberg, L.I. (1963). Comparative effects of dopamine on renal and femoral blood flows. The Pharmacologist, 5, 269.

    Google Scholar 

  • McGeer, E.G., McGeer,;P.L. and McLennan, H. (1961). The inhibitory action of 3-hydrokytyramine, gamma-aminobutyric acid (GABA) and some other compounds towards the crayfish stretch receptor neuron. J.Neurochem., 8, 36–49.

    Article  Google Scholar 

  • McKenzie, G.M. and Szerb, J.C. (1968). The effect of dihydroxyphenylalanine, pheniprazine, and dextroamphetamine on the in vivo release of dopamine from the caudate nucleus. J.Pharmacol., 162, 302–308.

    CAS  Google Scholar 

  • McLennan, H. (1965). The release of dopamine from the putamen. Experientia, 21, 725–726.

    Article  PubMed  CAS  Google Scholar 

  • Montagu, K.A. (1957). Catechol compounds in rat tissues and in brains of different animals. Nature, 180, 244–245.

    Article  PubMed  CAS  Google Scholar 

  • Nachmansohn, D. (1939). Cholinesterase dans le système nerveux central. Bull.Soc.Chim.biol., Paris, 21, 761–796.

    CAS  Google Scholar 

  • Pernow, B. (1953). Studies on substance P. Purification, occurrence and biological actions. Acta physiol.scand., 29, suppl. 105.

    Google Scholar 

  • Pletscher, A. and Gey, K.F. (1962). Topographical differences in the cerebral metabolism of DL-2-C14–3,4-dihydroxyphenylalanine. Experientia, 18, 512–513.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, L.J. and Sourkes, T.L. (1965). Influence of the substantia nigra on the catecholamine content of the striatum. Brain, 88, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Raab, W. (1943). Adrenaline and related substances in blood and tissues. Biochem.J., 37, 470–473.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raab, W. (1948). Specific sympathomimetic substance in the brain. Am.J.Physiol., 152, 324–339.

    PubMed  CAS  Google Scholar 

  • Raab, W. and Gigee, W. (1951). Concentration and distribution of “encephalin” in the brain of humans and animals. Proc.Soc.exp. Biol., 76, 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Roos, B.-E. and Steg, G. (1964). The effect of L-3,4-dihydroxyphenylalanine and DL-5-hydroxytryptophan on rigidity and tremor induced by reserpine, chlorpromazine and phenoxybenzamine. Life Sci., 3, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Rossum, J.M.van (1964). Significance of dopamine in psychomotor stimulant action. In Biochemical and Neurophysiological Correlations of Centrally Acting Drugs. (eds. E.Trabucchi, R. Paoletti and N.Canal). Pergamon Press, Oxford, London.

    Google Scholar 

  • Sano, I., Gamo, T., Kakimoto, Y., Taniguchi, K., Takesada, M. and Nishinuma, K. (1959). Distribution of catechol compounds in human brain. Biochim.biophys.Acta, 32, 586–587.

    Article  PubMed  CAS  Google Scholar 

  • Schumann, H.J. (1956). Nachweis von Oxytyramin (Dopamin) in sympathischen Nerven und Ganglien. Arch.exp.Path.Pharmak., 227, 566–573.

    Article  CAS  Google Scholar 

  • Seiden, L.S. and Carlsson, A. (1963). Temporary and partial antagonism by L-DOPA of reserpine-induced suppression of a conditioned avoidance response. Psychopharmacologia, 4, 418–423.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, F.H. (1938). The estimation of adrenaline. Biochem.J., 38, 19–25.

    Article  Google Scholar 

  • Shepherd, D.M. and West, G.B. (1953). Hydroxytyramine and the adrenal medulla. J.Physiol., 120, 15–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sourkes, T.L. and Murphy, G.F. (1961). III. Determination of catecholamines and catecholamino acids by differential spectrophotofluorimetry. In Methods in Medical Research. vol. IX. (ed.J.H. Quastel). Year Book Med.Publ., Chicago.

    Google Scholar 

  • Sourkes, T.L. and Poirier, L. (1965). Influence of the substantia nigra in the concentration of 5-hydroxytryptamine and dopamine of the striatum. Nature, 207, 202–203.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, D. (1963). Dopamine: its occurrence in mulluscan ganglia. Science, 139, 1051.

    Article  PubMed  CAS  Google Scholar 

  • Symposium (1966). Second Symposium on Catecholamines. Pharmacol. Rev., 18, 1–803.

    Google Scholar 

  • Tainter, M.L. (1930). Comparative action of sympathomimetic compounds: The influence of cocaine and certain related compounds upon the action of a group of sympathomimetic amines. Quart. J.Pharmacol., 3, 584–598.

    CAS  Google Scholar 

  • Ungerstedt, U. (1968). 6-hydroxydopamine induced degeneration of central monoamine neurons. Europ.J.Pharmacol., 5, 107–110.

    Google Scholar 

  • Vogt, M. (1954). The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J.Physiol., 123, 451–481.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weil-Malherbe, H. and Bone, A.D. (1952). Chemical estimation of adrenaline-like substances in blood. Biochem.J., 51, 311–318.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weil-Malherbe, H. and Bone, A.D. (1957). Intracellular distribution of catecholamines in the brain. Nature, 180, 1050–1051.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, G.N. (1971). Dopamine receptors: a review. Comp.gen. Pharmac., 2, 439–455.

    Article  CAS  Google Scholar 

  • Woodruff, G.N. and Walker, R.J. (1969). The effect of dopamine and other compounds on the activity of neurones of Helix aspersa; structure-activity relationships. Int.J.Neuropharmacol., 8, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Zeller, E.A. and Barsky, J. (1952). In vivo inhibition of liver and brain monoamine oxidase by 1-isonicotinyl-2-isopropyl hydrazine. Proc.Soc.exp.Biol.Med., 81, 459.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Contributors

About this chapter

Cite this chapter

Hornykiewicz, O. (1986). A Quarter Century of Brain Dopamine Research. In: Woodruff, G.N., Poat, J.A., Roberts, P.J. (eds) Dopaminergic Systems and their Regulation. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07431-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-07431-0_1

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-07433-4

  • Online ISBN: 978-1-349-07431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics