Skip to main content

In Silico Design, In Vitro Construction, and In Vivo Application of Synthetic Small Regulatory RNAs in Bacteria

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2760))

Abstract

Small regulatory RNAs (sRNAs) are short non-coding RNAs in bacteria capable of post-transcriptional regulation. sRNAs have recently gained attention as tools in basic and applied sciences, for example, to fine-tune genetic circuits or biotechnological processes. Even though sRNAs often have a rather simple and modular structure, the design of functional synthetic sRNAs is not necessarily trivial. This protocol outlines how to use computational predictions and synthetic biology approaches to design, construct, and validate synthetic sRNA functionality for their application in bacteria. The computational tool, SEEDling, matches the optimal seed region with the user-selected sRNA scaffold for repression of target mRNAs. The synthetic sRNAs are assembled using Golden Gate cloning and their functionality is subsequently validated. The protocol uses the acrA mRNA as an exemplary proof-of-concept target in Escherichia coli. Since AcrA is part of a multidrug efflux pump, acrA repression can be revealed by assessing oxacillin susceptibility in a phenotypic screen. However, in case target repression does not result in a screenable phenotype, an alternative validation of synthetic sRNA functionality based on a fluorescence reporter is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573. https://doi.org/10.1126/science.aaf5573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284. https://doi.org/10.1038/nature24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozcan A, Krajeski R, Ioannidi E, Lee B, Gardner A, Makarova KS, Koonin EV, Abudayyeh OO, Gootenberg JS (2021) Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597(7878):720–725. https://doi.org/10.1038/s41586-021-03886-5

    Article  CAS  PubMed  Google Scholar 

  4. van Beljouw SPB, Haagsma AC, Rodriguez-Molina A, van den Berg DF, Vink JNA, Brouns SJJ (2021) The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science 373(6561):1349–1353. https://doi.org/10.1126/science.abk2718

    Article  CAS  PubMed  Google Scholar 

  5. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027. https://doi.org/10.1126/science.aaq0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breaker RR (2018) Riboswitches and translation control. Cold Spring Harb Perspect Biol 10(11). https://doi.org/10.1101/cshperspect.a032797

  7. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43(6):880–891. https://doi.org/10.1016/j.molcel.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park S, Prevost K, Heideman EM, Carrier MC, Azam MS, Reyer MA, Liu W, Masse E, Fei J (2021) Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells. elife 10. https://doi.org/10.7554/eLife.64207

  9. Wagner EGH, Romby P (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 90:133–208. https://doi.org/10.1016/bs.adgen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  10. Philipp N, Brinkmann CK, Georg J, Schindler D, Berghoff BA (2023) DIGGER-Bac: prediction of seed regions for high-fidelity construction of synthetic small RNAs in bacteria. Bioinformatics. https://doi.org/10.1093/bioinformatics/btad285

  11. Kobel TS, Melo Palhares R, Fromm C, Szymanski W, Angelidou G, Glatter T, Georg J, Berghoff BA, Schindler D (2022) An easy-to-use plasmid toolset for efficient generation and benchmarking of synthetic small RNAs in bacteria. ACS Synth Biol 11(9):2989–3003. https://doi.org/10.1021/acssynbio.2c00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keseler IM, Gama-Castro S, Mackie A, Billington R, Bonavides-Martinez C, Caspi R, Kothari A, Krummenacker M, Midford PE, Muniz-Rascado L, Ong WK, Paley S, Santos-Zavaleta A, Subhraveti P, Tierrafria VH, Wolfe AJ, Collado-Vides J, Paulsen IT, Karp PD (2021) The EcoCyc database in 2021. Front Microbiol 12:711077. https://doi.org/10.3389/fmicb.2021.711077

    Article  PubMed  PubMed Central  Google Scholar 

  13. Green R, Rogers EJ (2013) Transformation of chemically competent E. coli. Methods Enzymol 529:329–336. https://doi.org/10.1016/B978-0-12-418687-3.00028-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sprouffske K, Wagner A (2016) Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinf 17:172. https://doi.org/10.1186/s12859-016-1016-7

    Article  Google Scholar 

  15. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2):e16765. https://doi.org/10.1371/journal.pone.0016765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Neil CS, Beach JL, Gruber TD (2018) Thiazole orange as an everyday replacement for ethidium bromide and costly DNA dyes for electrophoresis. Electrophoresis 39(12):1474–1477. https://doi.org/10.1002/elps.201700489

    Article  CAS  PubMed  Google Scholar 

  17. Oberacker P, Stepper P, Bond DM, Hohn S, Focken J, Meyer V, Schelle L, Sugrue VJ, Jeunen GJ, Moser T, Hore SR, von Meyenn F, Hipp K, Hore TA, Jurkowski TP (2019) Bio-On-Magnetic-Beads (BOMB): open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol 17(1):e3000107. https://doi.org/10.1371/journal.pbio.3000107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schindler D, Milbredt S, Sperlea T, Waldminghaus T (2016) Design and assembly of DNA sequence libraries for chromosomal insertion in bacteria based on a set of modified MoClo vectors. ACS Synth Biol 5(12):1362–1368. https://doi.org/10.1021/acssynbio.6b00089

    Article  CAS  PubMed  Google Scholar 

  19. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462. https://doi.org/10.1126/science.277.5331.1453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement and Statement

This work was supported by the Max Planck Society within the framework of the MaxGENESYS project (DS), the European Union (NextGenerationEU) via the European Regional Development Fund (ERDF) by the state Hesse within the project “biotechnological production of reactive peptides from waste streams as lead structures for drug development” (DS), and an Exploration Grant from the Boehringer Ingelheim Foundation (BAB). We are grateful to all laboratory members for extensive discussions on synthetic sRNAs in particular Cedric Brinkman for the development of SEEDling. All material is available from the corresponding author upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brück, M., Berghoff, B.A., Schindler, D. (2024). In Silico Design, In Vitro Construction, and In Vivo Application of Synthetic Small Regulatory RNAs in Bacteria. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics