Skip to main content

Probing Lipid Peroxidation in Ferroptosis: Emphasizing the Utilization of C11-BODIPY-Based Protocols

  • Protocol
  • First Online:
Ferroptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2712))

Abstract

Ferroptosis is a form of regulated cell death that relies on iron and is characterized by the accumulation of lipid peroxides, resulting in oncotic cell swelling and eventual disruption of cellular membranes. Lipid peroxidation, a hallmark of ferroptosis, refers to the oxidative deterioration of lipids that contain carbon-carbon double bonds, particularly polyunsaturated fatty acids (PUFAs). Understanding the molecular mechanisms underlying the interplay between ferroptosis and lipid peroxidation and identifying reliable techniques for assessing lipid peroxidation levels are crucial for further advancements in this field of research. Various methods have been developed to detect lipid peroxidation levels, including C11-BODIPY (BODIPY™ 581/591 C11), liperfluo, 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), Click-iT LAA (linoleamide alkyne), and liquid chromatography-mass spectrometry (LC-MS)-based epilipidomics (redox lipidomics). Currently, one of the most commonly used and effective methods is the C11-BODIPY assay, which utilizes a fluorescent probe that selectively sensitizes lipid peroxidation in cell membranes. Incorporating advanced techniques such as flow cytometry and fluorescence microscopy with C11-BODIPY dye is essential for accurate assessment of lipid peroxidation levels in ferroptosis. This chapter aims to provide comprehensive experimental protocols for detecting lipid peroxidation levels indicative of ferroptosis using C11-BODIPY staining and subsequent detection via flow cytometry and fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xue Q, Kang R, Klionsky DJ et al (2023) Copper metabolism in cell death and autophagy. Autophagy 16:1–21

    Google Scholar 

  3. Tang D, Chen X, Kang R et al (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125

    Article  CAS  PubMed  Google Scholar 

  4. Tsvetkov P, Coy S, Petrova B et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375:1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu X, Nie L, Zhang Y et al (2023) Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol 25: 404–414

    Google Scholar 

  6. Ren W, Zhao W, Cao L et al (2021) Involvement of the Actin Machinery in Programmed Cell Death. Front Cell Dev Biol 8:634849

    Google Scholar 

  7. Chen X, Comish PB, Tang D et al (2021) Characteristics and biomarkers of Ferroptosis. Front Cell Dev Biol 9:637162

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen X, Kang R, Kroemer G et al (2021) Ferroptosis in infection, inflammation, and immunity. J Exp Med 218:e20210518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conrad M, Lorenz SM, Proneth B (2021) Targeting ferroptosis: new Hope for as-yet-incurable diseases. Trends Mol Med 27:113–122

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stockwell BR, Jiang X (2020) The chemistry and biology of ferroptosis. Cell Chem Biol 27:365–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang X, Ardehali H, Min J et al (2023) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 20:7–23

    Article  PubMed  Google Scholar 

  13. Chen X, Kang R, Kroemer G et al (2021) Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends Cancer 7:891–901

    Article  CAS  PubMed  Google Scholar 

  14. Zhang R, Kang R, Tang D (2023) Ferroptosis in gastrointestinal cancer: from mechanisms to implications. Cancer Lett 561:216147

    Google Scholar 

  15. Zou Y, Naowarojna N, Wu TW et al (2023) Dynamic regulation of ferroptosis by lipid metabolism. Antioxid Redox Signal. https://doi.org/10.1089/ars.2023.0278

  16. Mao C, Liu X, Zhang Y et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593:586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698

    Article  CAS  PubMed  Google Scholar 

  18. Bersuker K, Hendricks JM, Li Z et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang L, Kon N, Li T et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dixon SJ, Patel DN, Welsch M et al (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. elife 3:e02523

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xie Y, Zhu S, Song X et al (2017) The tumor suppressor p53 limits Ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704

    Article  CAS  PubMed  Google Scholar 

  22. Sun X, Ou Z, Chen R et al (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura T, Hipp C, Santos Dias MourĂŁo A et al (2023) Phase separation of FSP1 promotes ferroptosis. Nature. https://doi.org/10.1038/s41586-023-06255-6

  24. Liang D, Feng Y, Zandkarimi F et al (2023) Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186:2748–2764.e22

    Google Scholar 

  25. Kodali ST, Kauffman P, Kotha SR et al (2020) Oxidative Lipidomics: analysis of oxidized lipids and lipid peroxidation in biological systems with relevance to health and disease. In: Berliner LJ, Parinandi NL (eds) Measuring oxidants and oxidative stress in biological systems. Springer, Cham, pp 61–92

    Chapter  Google Scholar 

  26. Lin Z, Liu J, Kang R et al (2021) Lipid metabolism in ferroptosis. Adv Biol (Weinh) 5:e2100396

    Article  PubMed  Google Scholar 

  27. Tyurina YY, Tyurin VA, Anthonymuthu T et al (2019) Redox lipidomics technology: looking for a needle in a haystack. Chem Phys Lipids 221:93–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun WY, Tyurin VA, Mikulska-Ruminska K et al (2021) Phospholipase iPLA(2)beta averts ferroptosis by eliminating a redox lipid death signal. Nat Chem Biol 17:465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Niu J, Wan X, Yu GY et al (2022) Phospholipid peroxidation-driven modification of chondrogenic transcription factor mediates alkoxyl radicals-induced impairment of embryonic bone development. Redox Biol 56:102437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mishima E, Ito J, Wu Z et al (2022) A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608:778–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song X, Liu J, Kuang F et al (2021) PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep 34:108767

    Article  CAS  PubMed  Google Scholar 

  32. Lin Z, Liu J, Long F et al (2022) The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat Commun 13:7965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez AM, Kim A, Yang WS (2020) Detection of ferroptosis by BODIPY 581/591 C11. Methods Mol Biol 2108:125–130

    Article  CAS  Google Scholar 

  34. Li J, Kang R, Tang D (2021) Monitoring autophagy-dependent ferroptosis. Methods Cell Biol 165:163–176

    Article  CAS  PubMed  Google Scholar 

  35. Liu K, Liu J, Zou B et al (2022) Trypsin-mediated sensitization to Ferroptosis increases the severity of pancreatitis in mice. Cell Mol Gastroenterol Hepatol 13:483–500

    Article  PubMed  Google Scholar 

  36. Wang F, Graham ET, Naowarojna N et al (2022) PALP: a rapid imaging technique for stratifying ferroptosis sensitivity in normal and tumor tissues in situ. Cell Chem Biol 29:157–170.e6

    Google Scholar 

  37. Zou Y, Henry WS, Ricq EL et al (2020) Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585:603–608

    Google Scholar 

  38. Huang D, Dai Z, Wang C, et al (2023) Ferroptosis is determined by chloride ions. BioRxiv. https://doi.org/10.1101/2023.02.07.526847

  39. Stockert JC (2021) Lipid peroxidation assay using BODIPY-Phenylbutadiene probes: a methodological overview. Methods Mol Biol 2202:199–214

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Minikes AM, Gao M et al (2019) Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viswanathan VS, Ryan MJ, Dhruv HD et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen PH, Cai L, Huffman K et al (2019) Metabolic diversity in human non-small cell lung cancer cells. Mol Cell 76:838–851.e5

    Google Scholar 

  43. Barosova H, Meldrum K, Karakocak BB et al (2021) Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions. Toxicol In Vitro 75:105178

    Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to Ziqi Wang for her invaluable assistance in creating the schematic diagram, and to Dr. Huabin Wang for proofreading the manuscript. This work was supported by grants from the Guangzhou Basic and Applied Basic Research Foundation (grant number 202102020509), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (grant number 2017ZT07S347), and the National Natural Science Foundation of China (grant number 31701174).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dai, Z., Zhang, W., Zhou, L., Huang, J. (2023). Probing Lipid Peroxidation in Ferroptosis: Emphasizing the Utilization of C11-BODIPY-Based Protocols. In: Kroemer, G., Tang, D. (eds) Ferroptosis. Methods in Molecular Biology, vol 2712. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3433-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3433-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3432-5

  • Online ISBN: 978-1-0716-3433-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics