Skip to main content

Viral Vector-Induced Ocular Hypertension in Mice

  • Protocol
  • First Online:
Retinal Ganglion Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2708))

Abstract

Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tham YC, Li X, Wong TY et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  2. Gordon MO, Beiser JJ, Brandt JD et al (2002) The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720. discussion 829–830

    Article  PubMed  Google Scholar 

  3. Gordon MO, Torri V, Miglior S et al (2007) Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 114(1):10–19

    Article  PubMed  Google Scholar 

  4. Nouri-Mahdavi K, Hoffman D, Coleman AL et al (2004) Predictive factors for glaucomatous visual field progression in the advanced glaucoma intervention study. Ophthalmology 111(9):1627–1635

    Article  PubMed  Google Scholar 

  5. Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246

    Article  CAS  PubMed  Google Scholar 

  6. Laboissonniere LA, Goetz JJ, Martin GM et al (2019) Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci Rep 9(1):15778

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fabregat A, Sidiropoulos K, Garapati P et al (2016) The Reactome pathway knowledgebase. Nucleic Acids Res 44(D1):D481–D487

    Article  CAS  PubMed  Google Scholar 

  8. Daniel S, Clark AF, McDowell CM (2018) Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Discov 4:7

    Article  CAS  PubMed  Google Scholar 

  9. Pang IH, Clark AF (2020) Inducible rodent models of glaucoma. Prog Retin Eye Res 75:100799

    Google Scholar 

  10. Anderson MG, Smith RS, Hawes NL et al (2002) Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30(1):81–85

    Article  CAS  PubMed  Google Scholar 

  11. Zode GS, Kuehn MH, Nishimura DY et al (2011) Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest 121(9):3542–3553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng Y, Wu S, Yan X et al (2022) Human Pro370Leu mutant myocilin induces the phenotype of open-angle glaucoma in transgenic mice. Cell Mol Neurobiol

    Google Scholar 

  13. Aihara M, Lindsey JD, Weinreb RN (2003) Ocular hypertension in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 44(4):1581–1585

    Article  PubMed  Google Scholar 

  14. Junglas B, Kuespert S, Seleem AA et al (2012) Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol 180(6):2386–2403

    Article  CAS  PubMed  Google Scholar 

  15. Morrison JC, Moore CG, Deppmeier LMH et al (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64(1):85–96

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Wei X, Cho K et al (2011) Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. Invest Ophthalmol Vis Sci 52(1):36–44

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Li L, Huang H et al (2019) Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse. elife:8

    Google Scholar 

  18. Pang IH, Millar JC, Clark AF (2015) Elevation of intraocular pressure in rodents using viral vectors targeting the trabecular meshwork. Exp Eye Res 141:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patil SV, Kasetti RB, Millar JC et al (2022) A novel mouse model of TGFbeta2-induced ocular hypertension using lentiviral gene delivery. Int J Mol Sci 23(13)

    Google Scholar 

  20. Shepard AR, Jacobson N, Millar JC et al (2007) Glaucoma-causing myocilin mutants require the Peroxisomal targeting signal-1 receptor (PTS1R) to elevate intraocular pressure. Hum Mol Genet 16(6):609–617

    Article  CAS  PubMed  Google Scholar 

  21. McDowell CM, Luan T, Zhang Z et al (2012) Mutant human myocilin induces strain specific differences in ocular hypertension and optic nerve damage in mice. Exp Eye Res 100:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shepard AR, Millar JC, Pang I et al (2010) Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. Invest Ophthalmol Vis Sci 51(4):2067–2076

    Google Scholar 

  23. Hernandez H, Millar JC, Curry SM et al (2018) BMP and Activin membrane bound inhibitor regulates the extracellular matrix in the trabecular meshwork. Invest Ophthalmol Vis Sci 59(5):2154–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mody AA, Millar JC, Clark AF (2021) ID1 and ID3 are negative regulators of TGFβ2-induced ocular hypertension and compromised aqueous humor outflow facility in mice. Invest Ophthalmol Vis Sci 62(6):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng M, Margetts TJ, Rayana NP et al (2022) The application of lentiviral vectors for the establishment of TGFbeta2-induced ocular hypertension in C57BL/6J mice. Exp Eye Res 221:109137

    Article  CAS  PubMed  Google Scholar 

  26. Wang WH, McNatt LG, Pang I et al (2008) Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest 118(3):1056–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mao W, Millar JC, Wang W et al (2012) Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci 53(11):7043–7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Webber HC, Bermudez JY, Millar JC et al (2018) The role of Wnt/beta-catenin signaling and K-cadherin in the regulation of intraocular pressure. Invest Ophthalmol Vis Sci 59(3):1454–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McDowell CM, Hernandez H, Mao W et al (2015) Gremlin induces ocular hypertension in mice through Smad3-dependent signaling. Invest Ophthalmol Vis Sci 56(9):5485–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giovingo M, Nolan M, McCarty R et al (2013) sCD44 overexpression increases intraocular pressure and aqueous outflow resistance. Mol Vis 19:2151–2164

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McDowell CM, Tebow HE, Wordinger RJ et al (2013) Smad3 is necessary for transforming growth factor-beta2 induced ocular hypertension in mice. Exp Eye Res 116:419–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raychaudhuri U, Millar JC, Clark AF (2018) Knockout of tissue transglutaminase ameliorates TGFbeta2-induced ocular hypertension: a novel therapeutic target for glaucoma? Exp Eye Res 171:106–110

    Article  CAS  PubMed  Google Scholar 

  33. Wordinger RJ, Fleenor DL, Hellberg PE et al (2007) Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: implications for glaucoma. Invest Ophthalmol Vis Sci 48(3):1191–1200

    Article  PubMed  Google Scholar 

  34. Hernandez H, Ortic-Medina WE, Luan T et al (2017) Crosstalk between transforming growth factor beta-2 and toll-like receptor 4 in the trabecular meshwork. Invest Ophthalmol Vis Sci 58(3):1811–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stone EM, Fingert JH, Alward WL et al (1997) Identification of a gene that causes primary open angle glaucoma. Science 275(5300):668–670

    Article  CAS  PubMed  Google Scholar 

  36. Alward WL, Fingert JH, Coote MA et al (1998) Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 338(15):1022–1027

    Article  CAS  PubMed  Google Scholar 

  37. Lutjen-Drecoll E (2005) Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Exp Eye Res 81(1):1–4

    Article  PubMed  Google Scholar 

  38. Inatani M, Tanihara H, Katsuta H et al (2001) Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 239(2):109–113

    Article  CAS  PubMed  Google Scholar 

  39. Agarwal P, Daher AM, Agarwal R (2015) Aqueous humor TGF-beta2 levels in patients with open-angle glaucoma: a meta-analysis. Mol Vis 21:612–620

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fuchshofer R, Tamm ER (2012) The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 347(1):279–290

    Article  CAS  PubMed  Google Scholar 

  41. Braunger BM, Fuchshofer R, Tamm ER (2015) The aqueous humor outflow pathways in glaucoma: a unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm 95(Pt B):173–181

    Article  PubMed  Google Scholar 

  42. Sugali CK, Rayana NP, Dai J et al (2021) The canonical Wnt signaling pathway inhibits the glucocorticoid receptor signaling pathway in the trabecular meshwork. Am J Pathol 191(6):1020–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knepper PA, Mayanil CSK, Goossens W et al (2002) Aqueous humor in primary open-angle glaucoma contains an increased level of CD44S. Invest Ophthalmol Vis Sci 43(1):133–139

    PubMed  Google Scholar 

  44. Nolan MJ, Giovingo MC, Miller AM et al (2007) Aqueous humor sCD44 concentration and visual field loss in primary open-angle glaucoma. J Glaucoma 16(5):419–429

    Article  PubMed  Google Scholar 

  45. Millar JC, Clark AF, Pang IH (2011) Assessment of aqueous humor dynamics in the mouse by a novel method of constant-flow infusion. Invest Ophthalmol Vis Sci 52(2):685–694

    Article  PubMed  Google Scholar 

  46. Millar JC, Phan TN, Pang IH et al (2015) Strain and age effects on aqueous humor dynamics in the mouse. Invest Ophthalmol Vis Sci 56(10):5764–5776

    Article  PubMed  Google Scholar 

  47. Millar JC, Phan TN, Pang IH (2018) Assessment of aqueous humor dynamics in the rodent by constant flow infusion. Methods Mol Biol 1695:109–120

    Article  CAS  PubMed  Google Scholar 

  48. Lopez NN, Patel GC, Raychaudhuri U et al (2017) Anterior chamber perfusion versus posterior chamber perfusion does not influence measurement of aqueous outflow facility in living mice by constant flow infusion. Exp Eye Res 164:95–108

    Article  CAS  PubMed  Google Scholar 

  49. McDowell CM, Kizhatil K, Elliot MH et al (2022) Consensus recommendation for mouse models of ocular hypertension to study aqueous humor outflow and its mechanisms. Invest Ophthalmol Vis Sci 63(2):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patel GC, Liu Y, Millar JC et al (2018) Glucocorticoid receptor GRbeta regulates glucocorticoid-induced ocular hypertension in mice. Sci Rep 8(1):862

    Article  PubMed  PubMed Central  Google Scholar 

  51. Raychaudhuri U, Millar JC, Clark AF (2017) Tissue Transglutaminase Elevates Intraocular Pressure in Mice. Invest Ophthalmol Vis Sci 58(14):6197–6211

    Article  CAS  PubMed  Google Scholar 

  52. Wang WH, McNatt LG, Pang IH et al (2008) Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci 49(5):1916–1923

    Article  PubMed  Google Scholar 

  53. Millar JC, Pang IH, Wang WH et al (2008) Effect of immunomodulation with anti-CD40L antibody on adenoviral-mediated transgene expression in mouse anterior segment. Mol Vis 14:10–19

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong VHY, Zhao D, Bui BV et al (2021) Increased episcleral venous pressure in a mouse model of circumlimbal suture induced ocular hypertension. Exp Eye Res 202:108348

    Article  CAS  PubMed  Google Scholar 

  55. Li G, Gonzalez P, Camras LJ et al (2013) Optimizing gene transfer to conventional outflow cells in living mouse eyes. Exp Eye Res 109:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang WH, Millar JC, Pang IH et al (2005) Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci 46(12):4617–4621

    Article  PubMed  Google Scholar 

  57. Ding C, Wang P, Tian N (2011) Effect of general anesthetics on IOP in elevated IOP mouse model. Exp Eye Res 92(6):512–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ringwald M, Iyer V, Mason JC et al (2011) The IKMC web portal: a central point of entry to data and resources from the international knockout mouse consortium. Nucleic Acids Res 39(Database issue):D849–D855

    Article  CAS  PubMed  Google Scholar 

  59. Thomson BR, Grannonico M, Liu F et al (2020) Angiopoietin-1 knockout mice as a genetic model of open-angle glaucoma. Transl Vis Sci Technol 9(4):16

    Article  PubMed  PubMed Central  Google Scholar 

  60. Borras T, Cowley DO, Asokan P et al (2020) Generation of a matrix Gla (Mgp) floxed mouse, followed by conditional knockout, uncovers a new Mgp function in the eye. Sci Rep 10(1):18583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jain A, Zode G, Kasetti RB et al (2017) CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci U S A 114(42):11199–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the following funding support: NEI R01 EY0162242 (AFC), NEI R21 EY019977 (AFC), NEI R01 EY024259, NEI R01EY030366 (AFC & GSZ), NEI R01 EY030967 (AFC), EY022077 (G.S.Z.), and EY026177 (G.S.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbot F. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Millar, J.C., Sundaresan, Y., Zode, G.S., Clark, A.F. (2023). Viral Vector-Induced Ocular Hypertension in Mice. In: Mead, B. (eds) Retinal Ganglion Cells. Methods in Molecular Biology, vol 2708. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3409-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3409-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3408-0

  • Online ISBN: 978-1-0716-3409-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics