Skip to main content

Three-Dimensional Human Brain Organoids to Model HIV-1 Neuropathogenesis

  • Protocol
  • First Online:
Virus-Host Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2610))

Abstract

Studying neurological diseases have long been hampered by the lack of physiologically relevant models to resemble the complex human brain and the associated pathologies. Three-dimensional brain organoids have emerged as cutting-edge technology providing an alternative in vitro model to study healthy neural development and function as well as pathogenesis of neurological disorders and neuropathologies induced by pathogens. Nonetheless,  the absence of immune cells in current models poses a barrier to fully recapitulate brain microenvironment during the onset of HIV-1-associated neuropathogenesis. To address this and to further the brain organoid technology, we have incorporated HIV-target microglia into brain organoids, generating a complex multicellular interaction, which mimics the HIV-1-infected brain environment. Here we describe the method to generate a brain organoid consisting on neurons, astrocytes, and microglia (with and without HIV infection) that recapitulate the HIV-associated neuropathology. This model has tremendous potential to expand our knowledge on neuronal dysfunction associated with HIV-1 infection of glia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang H (2018) Modeling neurological diseases with human brain organoids. Front Synaptic Neurosci 10:15. https://doi.org/10.3389/fnsyn.2018.00015

    Article  CAS  Google Scholar 

  2. Pasca SP (2018) The rise of three-dimensional human brain cultures. Nature 553(7689):437–445. https://doi.org/10.1038/nature25032

    Article  CAS  Google Scholar 

  3. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345(6194):1247125. https://doi.org/10.1126/science.1247125

    Article  CAS  Google Scholar 

  4. Qian X, Nguyen HN, Jacob F, Song H, Ming GL (2017) Using brain organoids to understand Zika virus-induced microcephaly. Development 144(6):952–957. https://doi.org/10.1242/dev.140707

    Article  CAS  Google Scholar 

  5. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen Z, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang H, Song H, Ming GL (2016) Brain-region-specific organoids using mini-bioreactors for Modeling ZIKV Exposure. Cell 165(5):1238–1254. https://doi.org/10.1016/j.cell.2016.04.032

    Article  CAS  Google Scholar 

  6. Dos Reis RS, Sant S, Keeney H, Wagner MCE, Ayyavoo V (2020) Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Sci Rep 10(1):15209. https://doi.org/10.1038/s41598-020-72214-0

    Article  CAS  Google Scholar 

  7. Cairns DM, Rouleau N, Parker RN, Walsh KG, Gehrke L, Kaplan DL (2020) A 3D human brain-like tissue model of herpes-induced Alzheimer’s disease. Sci Adv 6(19):eaay8828. https://doi.org/10.1126/sciadv.aay8828

    Article  CAS  Google Scholar 

  8. Zhang B, He Y, Xu Y, Mo F, Mi T, Shen QS, Li C, Li Y, Liu J, Wu Y, Chen G, Zhu W, Qin C, Hu B, Zhou G (2018) Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death Dis 9(7):719. https://doi.org/10.1038/s41419-018-0763-y

    Article  CAS  Google Scholar 

  9. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JL, Long B, Johansen N, Penn O, Yao Z, Eggermont J, Hollt T, Levi BP, Shehata SI, Aevermann B, Beller A, Bertagnolli D, Brouner K, Casper T, Cobbs C, Dalley R, Dee N, Ding SL, Ellenbogen RG, Fong O, Garren E, Goldy J, Gwinn RP, Hirschstein D, Keene CD, Keshk M, Ko AL, Lathia K, Mahfouz A, Maltzer Z, McGraw M, Nguyen TN, Nyhus J, Ojemann JG, Oldre A, Parry S, Reynolds S, Rimorin C, Shapovalova NV, Somasundaram S, Szafer A, Thomsen ER, Tieu M, Quon G, Scheuermann RH, Yuste R, Sunkin SM, Lelieveldt B, Feng D, Ng L, Bernard A, Hawrylycz M, Phillips JW, Tasic B, Zeng H, Jones AR, Koch C, Lein ES (2019) Conserved cell types with divergent features in human versus mouse cortex. Nature 573(7772):61–68. https://doi.org/10.1038/s41586-019-1506-7

    Article  CAS  Google Scholar 

  10. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340. https://doi.org/10.1038/nprot.2014.158

    Article  CAS  Google Scholar 

  11. Bissel SJ, Wiley CA (2004) Human immunodeficiency virus infection of the brain: pitfalls in evaluating infected/affected cell populations. Brain Pathol 14(1):97–108. https://doi.org/10.1111/j.1750-3639.2004.tb00503.x

    Article  CAS  Google Scholar 

  12. Resnick L, Berger JR, Shapshak P, Tourtellotte WW (1988) Early penetration of the blood-brain-barrier by HIV. Neurology 38(1):9–14. https://doi.org/10.1212/wnl.38.1.9

    Article  CAS  Google Scholar 

  13. Chakrabarti L, Hurtrel M, Maire MA, Vazeux R, Dormont D, Montagnier L, Hurtrel B (1991) Early viral replication in the brain of SIV-infected rhesus monkeys. Am J Pathol 139(6):1273–1280

    CAS  Google Scholar 

  14. Zayyad Z, Spudich S (2015) Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12(1):16–24. https://doi.org/10.1007/s11904-014-0255-3

    Article  Google Scholar 

  15. Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11:13. https://doi.org/10.1186/1742-6405-11-13

    Article  CAS  Google Scholar 

  16. Everall IPHR, Marcotte TD, Ellis RJ, McCutchan JA, Atkinsin JH, Grant I, Mallory M, Masliah E (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. Brain Pathol 9:9

    Google Scholar 

  17. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8(1):33–44. https://doi.org/10.1038/nrn2040

    Article  CAS  Google Scholar 

  18. Shou-Jiang G, Boshoff C, Jayachandra S, Weiss RA, Chang Y, Moore PS (1997) KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 15:7

    Google Scholar 

  19. Guha D, Nagilla P, Redinger C, Srinivasan A, Schatten GP, Ayyavoo V (2012) Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells. J Neuroinflammation 9:138. https://doi.org/10.1186/1742-2094-9-138

    Article  CAS  Google Scholar 

  20. Lu J, Delli-Bovi LC, Hecht J, Folkerth R, Sheen VL (2011) Generation of neural stem cells from discarded human fetal cortical tissue. J Vis Exp 51. https://doi.org/10.3791/2681

  21. Montefiori DC (2009) Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol Biol 485:395–405. https://doi.org/10.1007/978-1-59745-170-3_26

    Article  CAS  Google Scholar 

  22. Venkatachari NJ, Majumder B, Ayyavoo V (2007) Human immunodeficiency virus (HIV) type 1 Vpr induces differential regulation of T cell costimulatory molecules: direct effect of Vpr on T cell activation and immune function. Virology 358(2):347–356. https://doi.org/10.1016/j.virol.2006.08.030

    Article  CAS  Google Scholar 

  23. Guo L, Rezvanian A, Kukreja L, Hoveydai R, Bigio EH, Mesulam MM, El Khoury J, Geula C (2016) Postmortem adult human microglia proliferate in culture to high passage and maintain their response to Amyloid-beta. J Alzheimers Dis 54(3):1157–1167. https://doi.org/10.3233/JAD-160394

    Article  CAS  Google Scholar 

  24. Singh M, Close DA, Mukundan S, Johnston PA, Sant S (2015) Production of uniform 3D microtumors in hydrogel microwell arrays for measurement of viability, morphology, and signaling pathway activation. Assay Drug Dev Technol 13(9):570–583. https://doi.org/10.1089/adt.2015.662

    Article  CAS  Google Scholar 

  25. Singh M, Mukundan S, Jaramillo M, Oesterreich S, Sant S (2016) Three-dimensional breast cancer models Mimic Hallmarks of size-induced tumor progression. Cancer Res 76(13):3732–3743. https://doi.org/10.1158/0008-5472.CAN-15-2304

    Article  CAS  Google Scholar 

  26. Singh M, Warita K, Warita T, Faeder JR, Lee REC, Sant S, Oltvai ZN (2018) Shift from stochastic to spatially-ordered expression of serine-glycine synthesis enzymes in 3D microtumors. Sci Rep 8(1):9388. https://doi.org/10.1038/s41598-018-27266-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gengiz Geula from the Laboratory for Cognitive and Molecular Morphometry at Nothwestern University for donating the adult brain primary microglia cells for our study. This work is partially supported by the NIH (R37CA232209) and the start-up funds from Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh to Dr. Shilpa Sant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velpandi Ayyavoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

dos Reis, R.S., Sant, S., Ayyavoo, V. (2023). Three-Dimensional Human Brain Organoids to Model HIV-1 Neuropathogenesis. In: Aquino de Muro, M. (eds) Virus-Host Interactions. Methods in Molecular Biology, vol 2610. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2895-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2895-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2894-2

  • Online ISBN: 978-1-0716-2895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics