Skip to main content

SUMO-ID: A Strategy for the Identification of SUMO-Dependent Proximal Interactors

  • Protocol
  • First Online:
The Ubiquitin Code

Abstract

Posttranslational modifications by the ubiquitin-like family (UbL) of proteins determine the biological fate of a substrate, including new interaction partners. In the case of the small ubiquitin-like modifier (SUMO), this is achieved in part through its non-covalent interaction with SUMO-interacting motifs (SIMs) found in some proteins. Investigating such partner-complex formation is particularly challenging due to the fast dynamics and reversibility of SUMO modifications and the low affinity of SUMO-SIM interactions. Here, we present a detailed protocol of SUMO-ID, a technology that merges promiscuous proximity biotinylation by TurboID enzyme and protein-fragment complementation strategy to specifically biotinylate SUMO-dependent interactors of particular substrates. When coupled to streptavidin-affinity purification and mass spectrometry, SUMO-ID efficiently identifies SUMO-dependent interactors of a given protein. The methodology describes all the steps from SUMO-ID cell line generation to LC-MS sample preparation to study SUMO-dependent interactors of a particular protein. The protocol is generic and therefore adaptable to study other UbL-dependent interactors, such as ubiquitin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pichler A, Fatouros C, Lee H et al (2017) SUMO conjugation - a mechanistic view. Biomol Concepts 8(1):13–36. https://doi.org/10.1515/bmc-2016-0030

    Article  CAS  PubMed  Google Scholar 

  2. Nayak A, Muller S (2014) SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol 15(7):422. https://doi.org/10.1186/s13059-014-0422-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385. https://doi.org/10.1146/annurev-biochem-061909-093311

    Article  CAS  PubMed  Google Scholar 

  4. Vertegaal AC (2010) SUMO chains: polymeric signals. Biochem Soc Trans 38(Pt 1):46–49. https://doi.org/10.1042/BST0380046

    Article  CAS  PubMed  Google Scholar 

  5. Tatham MH, Geoffroy MC, Shen L et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5):538–546. https://doi.org/10.1038/ncb1716

    Article  CAS  PubMed  Google Scholar 

  6. Hendriks IA, D'Souza RC, Yang B et al (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21(10):927–936. https://doi.org/10.1038/nsmb.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hendriks IA, Lyon D, Young C et al (2017) Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 24(3):325–336. https://doi.org/10.1038/nsmb.3366

    Article  CAS  PubMed  Google Scholar 

  8. Kerscher O (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8(6):550–555. https://doi.org/10.1038/sj.embor.7400980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzalez-Prieto R, Eifler-Olivi K, Claessens LA et al (2021) Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex. Cell Rep 34(4):108691. https://doi.org/10.1016/j.celrep.2021.108691

    Article  CAS  PubMed  Google Scholar 

  10. Barroso-Gomila O, Trulsson F, Muratore V et al (2021) Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun 12(1):6671. https://doi.org/10.1038/s41467-021-26807-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Branon TC, Bosch JA, Sanchez AD et al (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36(9):880–887. https://doi.org/10.1038/nbt.4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michnick SW, Landry CR, Levy ED et al (2016) Protein-fragment complementation assays for large-scale analysis, functional dissection, and spatiotemporal dynamic studies of protein-protein interactions in living cells. Cold Spring Harb Protoc 2016(11). https://doi.org/10.1101/pdb.top083543

  13. Bekes M, Prudden J, Srikumar T et al (2011) The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J Biol Chem 286(12):10238–10247. https://doi.org/10.1074/jbc.M110.205153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pirone L, Xolalpa W, Sigurethsson JO et al (2017) A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation. Sci Rep 7:40756. https://doi.org/10.1038/srep40756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen TH, Lin HK, Scaglioni PP et al (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(5):805. https://doi.org/10.1016/j.molcel.2006.11.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding by the grants 765445-EU (UbiCODE Program), PID2020-114178GB-I00 (MINECO/FEDER, EU), SAF2017-90900-REDT (UBIRed Program). We acknowledge the COST Action CA20113 “PROTEOCURE” supported by COST (European Cooperation in Science and Technology). Additional support was provided by the Department of Industry, Tourism, and Trade of the Basque Country Government (Elkartek Research Programs) and by the Innovation Technology Department of the Bizkaia County.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosa Barrio or James D. Sutherland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barroso-Gomila, O., Mayor, U., Barrio, R., Sutherland, J.D. (2023). SUMO-ID: A Strategy for the Identification of SUMO-Dependent Proximal Interactors. In: Rodriguez, M.S., Barrio, R. (eds) The Ubiquitin Code. Methods in Molecular Biology, vol 2602. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2859-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2859-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2858-4

  • Online ISBN: 978-1-0716-2859-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics