Skip to main content

A Survey of Transcription Factors in Cell Fate Control

  • Protocol
  • First Online:
Transcription Factor Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2594))

Abstract

Transcription factors (TFs) play a cardinal role in the development and maintenance of human physiology by acting as mediators of gene expression and cell state control. Recent advancements have broadened our knowledge on the potency of TFs in governing cell physiology and have deepened our understanding of the mechanisms through which they exert this control. The ability of TFs to program cell fates has gathered significant interest in recent decades, and high-throughput technologies now allow for the systematic discovery of forward programming factors to convert pluripotent stem cells into numerous differentiated cell types. The next generation of these technologies has the potential to improve our understanding and control of cell fates and states and provide advanced therapeutic modalities to address many medical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA, Chan ET, Metzler G, Vedenko A, Chen X, Kuznetsov H, Wang CF, Coburn D, Newburger DE, Morris Q, Hughes TR, Bulyk ML (2009) Diversity and complexity in DNA recognition by transcription factors. Science 3245935:1720–1723

    Article  Google Scholar 

  2. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 1724:650–665

    Article  Google Scholar 

  3. Dekker J, Heard E (2015) Structural and functional diversity of topologically associating domains. FEBS Lett 58920(Pt A):2877–2884

    Article  Google Scholar 

  4. Inukai S, Kock KH, Bulyk ML (2017) Transcription factor-DNA binding: beyond binding site motifs. Curr Opin Genet Dev 43:110–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boeva V (2016) Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells. Front Genet 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brewster RC, Weinert FM, Garcia HG, Song D, Rydenfelt M, Phillips R (2014) The transcription factor titration effect dictates level of gene expression. Cell 1566:1312–1323

    Article  Google Scholar 

  7. Darieva Z, Clancy A, Bulmer R, Williams E, Pic-Taylor A, Morgan BA, Sharrocks AD (2010) A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression. Mol Cell 381:29–40

    Article  Google Scholar 

  8. Karreth FA, Tay Y, Pandolfi PP (2014) Target competition: transcription factors enter the limelight. Genome Biol 154:114

    Article  Google Scholar 

  9. Castellanos M, Mothi N, Munoz V (2020) Eukaryotic transcription factors can track and control their target genes using DNA antennas. Nat Commun 111:540

    Article  Google Scholar 

  10. Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY (2019) AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res 47:D33–DD8

    Article  CAS  PubMed  Google Scholar 

  11. Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov F (2017) GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res 45:D61–DD7

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Liu W, Zhang HM, Xie GY, Miao YR, Xia M, Guo AY (2020) hTFtarget: a comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics 182:120–128

    Article  Google Scholar 

  13. Wingender E, Schoeps T, Donitz J (2013) TFClass: an expandable hierarchical classification of human transcription factors. Nucleic Acids Res 41(Database issue):D165

    Article  CAS  PubMed  Google Scholar 

  14. Wingender E, Schoeps T, Haubrock M, Donitz J (2015) TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res 43:D97–D102

    Article  CAS  PubMed  Google Scholar 

  15. Wingender E, Schoeps T, Haubrock M, Krull M, Donitz J (2018) TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res 46(D1):D343–D3D7

    Article  CAS  PubMed  Google Scholar 

  16. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Chen H, Wang J, Tang H, Ge W, Zhou Y, Ye F, Jiang M, Wu J, Xiao Y, Jia X, Zhang T, Ma X, Zhang Q, Bai X, Lai S, Yu C, Zhu L, Lin R, Gao Y, Wang M, Wu Y, Zhang J, Zhan R, Zhu S, Hu H, Wang C, Chen M, Huang H, Liang T, Chen J, Wang W, Zhang D, Guo G (2020) Construction of a human cell landscape at single-cell level. Nature 5817808:303–309

    Article  Google Scholar 

  17. Schulz KN, Harrison MM (2019) Mechanisms regulating zygotic genome activation. Nat Rev Genet 204:221–234

    Article  Google Scholar 

  18. De Iaco A, Planet E, Coluccio A, Verp S, Duc J, Trono D (2017) DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat Genet 496:941–945

    Article  Google Scholar 

  19. McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Izumi K, Nakato R, Zhang Z, Edmondson AC, Noon S, Dulik MC, Rajagopalan R, Venditti CP, Gripp K, Samanich J, Zackai EH, Deardorff MA, Clark D, Allen JL, Dorsett D, Misulovin Z, Komata M, Bando M, Kaur M, Katou Y, Shirahige K, Krantz ID (2015) Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat Genet 474:338–344

    Article  Google Scholar 

  21. Raible SE, Mehta D, Bettale C, Fiordaliso S, Kaur M, Medne L, Rio M, Haan E, White SM, Cusmano-Ozog K, Nishi E, Guo Y, Wu H, Shi X, Zhao Q, Zhang X, Lei Q, Lu A, He X, Okamoto N, Miyake N, Piccione J, Allen J, Matsumoto N, Pipan M, Krantz ID, Izumi K (2019) Clinical and molecular spectrum of CHOPS syndrome. Am J Med Genet A 1797:1126–1138

    Google Scholar 

  22. Peters LM, Anderson DW, Griffith AJ, Grundfast KM, San Agustin TB, Madeo AC, Friedman TB, Morell RJ (2002) Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. Hum Mol Genet 1123:2877–2885

    Article  Google Scholar 

  23. Mogensen TH (2018) IRF and STAT transcription factors - from basic biology to roles in infection, protective immunity, and primary Immunodeficiencies. Front Immunol 9:3047

    Article  CAS  PubMed  Google Scholar 

  24. Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 1526:1237–1251

    Article  Google Scholar 

  25. Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of immunological tolerance. Cell 1401:123–135

    Article  Google Scholar 

  26. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 1264:663–676

    Article  Google Scholar 

  27. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 516:987–1000

    Article  Google Scholar 

  28. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 4637284:1035–1041

    Article  Google Scholar 

  29. Iwafuchi-Doi M, Zaret KS (2014) Pioneer transcription factors in cell reprogramming. Genes Dev 2824:2679–2692

    Article  Google Scholar 

  30. Ng AHM, Khoshakhlagh P, Rojo Arias JE, Pasquini G, Wang K, Swiersy A, Shipman SL, Appleton E, Kiaee K, Kohman RE, Vernet A, Dysart M, Leeper K, Saylor W, Huang JY, Graveline A, Taipale J, Hill DE, Vidal M, Melero-Martin JM, Busskamp V, Church GM (2021) A comprehensive library of human transcription factors for cell fate engineering. Nat Biotechnol 394:510–519

    Article  Google Scholar 

  31. Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, Jeon J, Cha Y, Kim K, Li Q, Henchcliffe C, Kaplitt M, Neff C, Rapalino O, Seo H, Lee IH, Kim J, Kim T, Petsko GA, Ritz J, Cohen BM, Kong SW, Leblanc P, Carter BS, Kim KS (2020) Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N Engl J Med 38220:1926–1932

    Article  Google Scholar 

  32. Mandai M, Kurimoto Y, Takahashi M (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 3778:792–793

    Google Scholar 

  33. Sugai K, Sumida M, Shofuda T, Yamaguchi R, Tamura T, Kohzuki T, Abe T, Shibata R, Kamata Y, Ito S, Okubo T, Tsuji O, Nori S, Nagoshi N, Yamanaka S, Kawamata S, Kanemura Y, Nakamura M, Okano H (2021) First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: study protocol. Regen Ther 18:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kogut I, McCarthy SM, Pavlova M, Astling DP, Chen X, Jakimenko A, Jones KL, Getahun A, Cambier JC, Pasmooij AMG, Jonkman MF, Roop DR, Bilousova G (2018) High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 91:745

    Article  Google Scholar 

  35. Wang K, Guzman AK, Yan Z, Zhang S, Hu MY, Hamaneh MB, Yu YK, Tolu S, Zhang J, Kanavy HE, Ye K, Bartholdy B, Bouhassira EE (2019) Ultra-high-frequency reprogramming of individual long-term hematopoietic stem cells yields low somatic variant induced pluripotent stem cells. Cell Rep 2610:2580–2592

    Article  Google Scholar 

  36. Eguchi A, Wleklinski MJ, Spurgat MC, Heiderscheit EA, Kropornicka AS, Vu CK, Bhimsaria D, Swanson SA, Stewart R, Ramanathan P, Kamp TJ, Slukvin I, Thomson JA, Dutton JR, Ansari AZ (2016) Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proc Natl Acad Sci U S A 11351:E8257–E8E66

    Google Scholar 

  37. Liu S, Striebel J, Pasquini G, Ng AHM, Khoshakhlagh P, Church GM, Busskamp V (2021) Neuronal cell-type engineering by transcriptional activation. Front Genome Ed 3:715697

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parastoo Khoshakhlagh or Alex H. M. Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lesha, E., George, H., Zaki, M.M., Smith, C.J., Khoshakhlagh, P., Ng, A.H.M. (2023). A Survey of Transcription Factors in Cell Fate Control. In: Song, Q., Tao, Z. (eds) Transcription Factor Regulatory Networks. Methods in Molecular Biology, vol 2594. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2815-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2815-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2814-0

  • Online ISBN: 978-1-0716-2815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics