Skip to main content

The Use of Galleria mellonella Larvae to Study the Pathogenicity and Clonal Lineage-Specific Behaviors of the Emerging Fungal Pathogen Candida auris

  • Protocol
  • First Online:
Candida auris

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2517))

Abstract

Candida species are the most common fungal causes of disseminated infections in humans. Although such infections are associated with high morbidity and mortality, it is widely accepted that virulence, antifungal susceptibility, and disease outcome vary according to individual Candida species. In this respect, the emerging pathogen Candida auris has received much attention due to its propensity to cause widespread nosocomial outbreaks, to exhibit high virulence in several infection models, and to develop resistance to multiple classes of antifungal drugs. Although mammalian models of infection have long been viewed as the gold standard for studies on fungal virulence, comparative pathogenicity, and evaluation of antifungal drug efficacy, the larvae of the greater wax moth Galleria mellonella have shown considerable promise as an alternative invertebrate model of infection. Galleria larvae are inexpensive, are easily maintained in the laboratory, tolerate incubation at human physiological temperatures, possess cellular and humoral immune systems that share many features with mammals, and allow investigation of pathogenicity/virulence using multiple different reading endpoints. Here, I describe in detail the methods that can be used to study the virulence/pathogenicity of Candida auris in G. mellonella.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nucci M, Marr KA (2005) Emerging fungal diseases. Clin Infect Dis 41:521–526

    Article  Google Scholar 

  2. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ (2018) Invasive candidiasis. Nat Rev Dis Primers 4:18026. https://doi.org/10.1038/nrdp.2018.26

    Article  PubMed  Google Scholar 

  3. Quindós G, Marcos-Arias C, San-Millán R, Mateo E, Eraso E (2018) The continuous changes in the aetiology and epidemiology of invasive candidiasis: from familiar Candida albicans to multiresistant Candida auris. Int Microbiol 21:107–119. https://doi.org/10.1007/s10123-018-0014-1

    Article  PubMed  Google Scholar 

  4. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H (2009) Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 53:41–44. https://doi.org/10.1111/j.1348-0421.2008.00083.x

    Article  PubMed  CAS  Google Scholar 

  5. Chowdhary A, Anil Kumar V, Sharma C, Prakash A, Agarwal K, Babu R, Dinesh KR, Karim S, Singh SK, Hagen F, Meis JF (2014) Multidrug-resistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis 33:919–926. https://doi.org/10.1007/s10096-013-2027-1

    Article  PubMed  CAS  Google Scholar 

  6. Magobo RE, Corcoran C, Seetharam S, Govender NP (2014) Candida auris-associated candidemia, South Africa. Emerg Infect Dis 20:1250–1251. https://doi.org/10.3201/eid2007.131765

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP (2017) Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64:134–140. https://doi.org/10.1093/cid/ciw691

    Article  PubMed  CAS  Google Scholar 

  8. Borman AM, Johnson EM (2020) Candida auris in the UK: introduction, dissemination, and control. PLoS Pathog 16:e1008563. https://doi.org/10.1371/journal.ppat.1008563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A (2018) Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J Intensive Care 6:69. https://doi.org/10.1186/s40560-018-0342-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, Candida auris Incident Management Team, Manuel R, Brown CS (2017) Candida auris: a review of the literature. Clin Microbiol Rev 31:e00029-17. https://doi.org/10.1128/CMR.00029-17

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF (2019) Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis 25:1780–1781. https://doi.org/10.3201/eid2509.190686

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taori SK, Khonyongwa K, Hayden I, Athukorala GDA, Letters A, Fife A, Desai N, Borman AM (2019) Candida auris outbreak: mortality, interventions and cost of sustaining control. J Infect 79:601–611. https://doi.org/10.1016/j.jinf.2019.09.007

    Article  PubMed  Google Scholar 

  13. Eyre DW, Sheppard AE, Madder H, Moir I, Moroney R, Quan TP, Griffiths D, George S, Butcher L, Morgan M, Newnham R, Sunderland M, Clarke T, Foster D, Hoffman P, Borman AM, Johnson EM, Moore G, Brown CS, Walker AS, Peto TEA, Crook DW, Jeffery KJM (2018) A Candida auris outbreak and its control in an intensive care setting. N Engl J Med 379:1322–1331. https://doi.org/10.1056/NEJMoa1714373

    Article  PubMed  Google Scholar 

  14. Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A, Hall A, Ryan L, Shackleton J, Trimlett R, Meis JF, Armstrong-James D, Fisher MC (2016) First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 5:35. https://doi.org/10.1186/s13756-016-0132-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mulet Bayona JV, Tormo Palop N, Salvador García C, Herrero Rodríguez P, Abril López de Medrano V, Ferrer Gómez C, Gimeno Cardona C (2020) Characteristics and management of candidaemia episodes in an established Candida auris outbreak. Antibiotics (Basel) 9:558. https://doi.org/10.3390/antibiotics9090558

    Article  CAS  Google Scholar 

  16. Borman AM, Szekely A, Johnson EM (2017) Isolates of the emerging pathogen Candida auris present in the UK have several geographic origins. Med Mycol 55:563–567. https://doi.org/10.1093/mmy/myw147

    Article  PubMed  CAS  Google Scholar 

  17. Szekely A, Borman AM, Johnson EM (2019) Candida auris isolates of the Southern Asian and South African lineages exhibit different phenotypic and antifungal susceptibility profiles in vitro. J Clin Microbiol 57:e02055-18. https://doi.org/10.1128/JCM.02055-18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Borman AM, Szekely A, Johnson EM (2016) Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 1:e00189-16. https://doi.org/10.1128/mSphere.00189-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lionakis MS (2011) Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence 2:521–527. https://doi.org/10.4161/viru.2.6.18520

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kavanagh K, Sheehan G (2018) The use of Galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. J Fungi (Basel) 4:113. https://doi.org/10.3390/jof4030113

    Article  CAS  Google Scholar 

  21. Ames L, Duxbury S, Pawlowska B et al (2017) Galleria mellonella as a host model to study Candida glabrata virulence and antifungal efficacy. Virulence 8:1909–1917

    Article  Google Scholar 

  22. Champion OL, Titball RW, Bates S (2018) Standardization of G. mellonella larvae to provide reliable and reproducible results in the study of fungal pathogens. J Fungi (Basel) 4:108. https://doi.org/10.3390/jof4030108

    Article  CAS  Google Scholar 

  23. Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E (2020) Galleria mellonella for the evaluation of antifungal efficacy against medically important fungi, a narrative review. Microorganisms 8:390. https://doi.org/10.3390/microorganisms8030390

    Article  PubMed Central  CAS  Google Scholar 

  24. Durieux MF, Melloul É, Jemel S et al (2021) Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence 12:818–834. https://doi.org/10.1080/21505594.2021.1893945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Borman AM (2018) Of mice and men and larvae: Galleria mellonella to model the early host-pathogen interactions after fungal infection. Virulence 9:9–12. https://doi.org/10.1080/21505594.2017.1382799

    Article  PubMed  Google Scholar 

  26. Mowlds P, Kavanagh K (2008) Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165:5–12. https://doi.org/10.1007/s11046-007-9069-9

    Article  PubMed  Google Scholar 

  27. Borman AM, Szekely A, Linton CJ, Palmer MD, Brown P, Johnson EM (2013) Epidemiology, antifungal susceptibility, and pathogenicity of Candida africana isolates from the United Kingdom. J Clin Microbiol 51:967–972. https://doi.org/10.1128/JCM.02816-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sheehan G, Kavanagh K (2018) Analysis of the early cellular and humoral responses of Galleria mellonella larvae to infection by Candida albicans. Virulence 9:163–172. https://doi.org/10.1080/21505594.2017.1370174

    Article  PubMed  CAS  Google Scholar 

  29. Forgács L, Borman AM, Prépost E et al (2020) Comparison of in vivo pathogenicity of four Candida auris clades in a neutropenic bloodstream infection murine model. Emerg Microbes Infect 29:1160–1169. https://doi.org/10.1080/22221751.2020.1771218

    Article  CAS  Google Scholar 

  30. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    Article  Google Scholar 

  31. Loh JM, Adenwalla N, Wiles S, Proft T (2013) Galleria mellonella larvae as an infection model for group A Streptococcus. Virulence 4:419–428. https://doi.org/10.4161/viru.24930

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mowlds P, Barron A, Kavanagh K (2008) Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect 10:628–634. https://doi.org/10.1016/j.micinf.2008.02.011

    Article  PubMed  CAS  Google Scholar 

  33. Leach L, Zhu Y, Chaturvedi S (2018) Development and validation of a real-time PCR assay for rapid detection of Candida auris from surveillance samples. J Clin Microbiol 56:e01223-17. https://doi.org/10.1128/JCM.01223-17

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arastehfar A, Fang W, Daneshnia F, Al-Hatmi AM, Liao W, Pan W, Khan Z, Ahmad S, Rosam K, Lackner M, Lass-Flörl C, Hagen F, Boekhout T (2019) Novel multiplex real-time quantitative PCR detecting system approach for direct detection of Candida auris and its relatives in spiked serum samples. Future Microbiol 14:33–45. https://doi.org/10.2217/fmb-2018-0227

    Article  PubMed  Google Scholar 

  35. Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K (2006) Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect 8:2105–2112

    Article  CAS  Google Scholar 

  36. Fallon JP, Troy N, Kavanagh K (2011) Pre-exposure of Galleria mellonella larvae to different doses of Aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence 2:413–421. https://doi.org/10.4161/viru.2.5.17811

    Article  PubMed  Google Scholar 

  37. Kloezen W, van Helvert-van Poppel M, Fahal AH, van de Sande WW (2015) A Madurella mycetomatis grain model in Galleria mellonella larvae. PLoS Negl Trop Dis 9:e0003926. https://doi.org/10.1371/journal.pntd.0003926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the UK National Mycology Reference Laboratory for their interest in these approaches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Borman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borman, A.M. (2022). The Use of Galleria mellonella Larvae to Study the Pathogenicity and Clonal Lineage-Specific Behaviors of the Emerging Fungal Pathogen Candida auris. In: Lorenz, A. (eds) Candida auris. Methods in Molecular Biology, vol 2517. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2417-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2417-3_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2416-6

  • Online ISBN: 978-1-0716-2417-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics