Skip to main content

Prediction of DNA-Binding Transcription Factors in Bacteria and Archaea Genomes

  • Protocol
  • First Online:
Prokaryotic Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2516))

Abstract

DNA-binding transcription factors (TFs) play a central role in the gene expression of all organisms, from viruses to humans, including bacteria and archaea. The role of these proteins is the fate of gene expression in the context of environmental challenges. Because thousands of genomes have been sequenced to date, predictions of the encoded proteins are validated through the use of bioinformatics tools to obtain the necessary experimental, posterior knowledge. In this chapter, we describe three approaches to identify TFs in protein sequences. The first approach integrates the results of sequence comparisons and PFAM assignments, using as reference a manually curated collection of TFs. The second approach considers the prediction of DNA-binding structures, such as the classical helix-turn-helix (HTH); and the third approach considers a deep learning model. We suggest that all approaches must be considered together to increase the possibility of identifying new TFs in bacterial and archaeal genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martinez-Antonio A, Janga SC, Salgado H, Collado-Vides J (2006) Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli. Trends Microbiol 14(1):22–27

    Article  CAS  Google Scholar 

  2. Browning DF, Busby SJ (2016) Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol 14(10):638–650

    Article  CAS  Google Scholar 

  3. Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2(1):57–65

    Article  CAS  Google Scholar 

  4. Flores-Bautista E, Cronick CL, Fersaca AR, Martinez-Nuñez MA, Perez-Rueda E (2018) Functional prediction of hypothetical transcription factors of Escherichia coli K-12 based on expression data. Comput Struct Biotechnol J 16:157–166

    Article  CAS  Google Scholar 

  5. Perez-Rueda E, Hernandez-Guerrero R, Martinez-Nuñez MA, Armenta-Medina D, Sanchez I, Ibarra JA (2018) Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors. PLoS One 13(4):e0195332

    Article  Google Scholar 

  6. Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P et al (2021) An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev

    Google Scholar 

  7. Pérez-Rueda E, Janga SC (2010) Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin. Mol Biol Evol 27(6):1449–1459

    Article  Google Scholar 

  8. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muniz-Rascado L, Garcia-Sotelo JS et al (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44(D1):D133–D143

    Article  CAS  Google Scholar 

  9. Sierro N, Makita Y, de Hoon M, Nakai K (2008) DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 36(Database issue):D93–D96

    Article  CAS  Google Scholar 

  10. Kummerfeld SK, Teichmann SA (2006) DBD: a transcription factor prediction database. Nucleic Acids Res 34(Database issue):D74–D81

    Article  CAS  Google Scholar 

  11. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL et al (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D4d9

    Article  CAS  Google Scholar 

  12. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ (2011) Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinf 12:124

    Article  Google Scholar 

  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  14. Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22(10):1315–1316

    Article  CAS  Google Scholar 

  15. Brennan RG, Matthews BW (1989) The helix-turn-helix DNA binding motif. J Biol Chem 264(4):1903–1906

    Article  CAS  Google Scholar 

  16. Nishikawa T, Okamura H, Nagadoi A, König P, Rhodes D, Nishimura Y (2001) Solution structure of a telomeric DNA complex of human TRF1. Structure 9(12):1237–1251

    Article  CAS  Google Scholar 

  17. Wintjens R, Rooman M (1996) Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262(2):294–313

    Article  CAS  Google Scholar 

  18. Dodd IB, Egan JB (1990) Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18(17):5019–5026

    Article  CAS  Google Scholar 

  19. Kim GB, Gao Y, Palsson BO, Lee SY (2021) DeepTFactor: A deep learning-based tool for the prediction of transcription factors. Proc Natl Acad Sci U S A 118(2)

    Google Scholar 

Download references

Acknowledgments

We thank Joaquin Morales, Sandra Sauza, and Israel Sanchez for their technical support. Leonardo Ledesma is a doctoral student from Programa de Doctorado en Ingeniería y Ciencias de la Computación at UNAM and received a fellowship from Consejo Nacional de Ciencia y Tecnología (CONACYT CVU 857463). This work was supported by Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (IN-209620),Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (P918PTE0261), and CONACYT (320012). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Perez-Rueda .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ledesma, L., Hernandez-Guerrero, R., Perez-Rueda, E. (2022). Prediction of DNA-Binding Transcription Factors in Bacteria and Archaea Genomes. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2413-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2412-8

  • Online ISBN: 978-1-0716-2413-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics