Skip to main content

Chromosome Conformation Capture in Bacteria and Archaea

  • Protocol
  • First Online:
Prokaryotic Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2516))

Abstract

The three-dimensional structure of the chromosome is encoded within its sequence and regulates activities such as replication and transcription. This necessitates the study of the spatial organization of the chromosome in relation to the underlying sequence. Chromosome conformation capture (3C) techniques are proximity ligation-based approaches that simplify the three-dimensional architecture of the chromosome into a one-dimensional library of hybrid ligation junctions. Deciphering the information contained in these libraries resolves chromosome architecture in a sequence-specific manner. This chapter describes the preparation of 3C libraries for bacteria and archaea. It details how the three-dimensional architecture of local chromatin can be extracted from the 3C library using qPCR (3C-qPCR), and it summarizes the processing of 3C libraries for next-generation sequencing (3C-Seq) for a study of global chromosome organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marbouty M, Le GA, Cattoni DI et al (2015) Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59:588–602

    Article  CAS  Google Scholar 

  2. Le TBK, Imakaev MV, Mirny LA et al (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science (80-) 342:731–734

    Article  CAS  Google Scholar 

  3. Lioy VS, Cournac A, Marbouty M et al (2018) Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172:771–783.e18

    Article  CAS  Google Scholar 

  4. Valk RA van der, Vreede J, Qin L et al (2017) Mechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity. elife 6:e27369

    Article  Google Scholar 

  5. Kotlajich MV, Hron DR, Boudreau BA et al (2015) Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. elife 2015:e04970

    Article  Google Scholar 

  6. Takemata N, Samson RY, Bell SD (2019) Physical and functional compartmentalization of archaeal chromosomes. Cell 179:165–179.e18

    Article  CAS  Google Scholar 

  7. Takemata N, Bell SD (2021) Multi-scale architecture of archaeal chromosomes. Mol Cell 81:473–487.e6

    Article  CAS  Google Scholar 

  8. Le TB, Laub MT (2016) Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J 35:1582–1595

    Article  CAS  Google Scholar 

  9. Tran NT, Laub MT, Le TBK (2017) SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription. Cell Rep 20:2057–2071

    Article  CAS  Google Scholar 

  10. Wang X, Brandão HB, Le TBK et al (2017) Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science (80-) 355:524–527

    Article  CAS  Google Scholar 

  11. Cockram C, Thierry A, Gorlas A et al (2021) Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Mol Cell 81:459–472.e10

    Article  CAS  Google Scholar 

  12. Dame RT, Rashid FZM, Grainger DC (2020) Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat Rev Genet 21:227–242

    Article  CAS  Google Scholar 

  13. Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science (80-) 95:1306–1311

    Article  Google Scholar 

  14. Hagege H, Klous P, Braem C et al (2007) Quantitative analysis of chromosome conformation capture assays (3c-qpcr). Nat Protoc 2:1722–1733

    Article  CAS  Google Scholar 

  15. Lieberman-Aiden E, Berkum NL Van, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science (`80-) 326:289–293

    Google Scholar 

  16. Nagano T, Lubling Y, Várnai C et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67

    Article  CAS  Google Scholar 

  17. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64

    Article  CAS  Google Scholar 

  18. Stevens TJ, Lando D, Basu S et al (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:59–64

    Article  CAS  Google Scholar 

  19. Crémazy FG, Rashid FZM, Haycocks JR et al (2018) Determination of the 3D genome organization of bacteria using Hi-C. In: Methods in molecular biology, pp 3–18

    Google Scholar 

  20. Hofmann A, Heermann DW (2018) Processing and analysis of Hi-C data on bacteria. In: Methods in molecular biology, pp 19–31

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Netherlands Organization for Scientific Research [VICI 016.160.613 and OCENW.GROOT.2019.012], the FOM Foundation for Fundamental Research on Matter program ‘Crowd management: The physics of genome processing in complex environments and the Human Frontier Science Program (HFSP) [RGP0014/2014].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remus T. Dame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rashid, FZ.M., Detmar, L., Dame, R.T. (2022). Chromosome Conformation Capture in Bacteria and Archaea. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2413-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2412-8

  • Online ISBN: 978-1-0716-2413-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics