Skip to main content

Fluorescent Reporters for Studying Circadian Rhythms in Drosophila melanogaster

  • Protocol
  • First Online:
Circadian Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2482))

Abstract

Circadian rhythms are daily oscillations in physiology and gene expression that are governed by a molecular feedback loop known as the circadian clock. In Drosophila melanogaster, the core clock consists of transcription factors clock (Clk) and cycle (cyc) which form protein heterodimers that activate transcription of their repressors, period (per) and timeless (tim). Once produced, protein heterodimers of per/tim repress Clk/cyc activity. One cycle of activation and repression takes approximately (“circa”) 24-h (“diem”) and repeats even in the absence of external stimuli. The circadian clock is active in many cells throughout the body; however, tracking it dynamically represents a challenge. Traditional fluorescent reporters are slowly degraded and consequently cannot be used to assess dynamic temporal changes exhibited by the circadian clock. The use of rapidly degraded fluorescent protein reporters containing destabilized GFP (dGFP) that report transcriptional activity in vivo at a single-cell level with ~1-h temporal resolution can circumvent this problem. Here we describe the use of circadian clock reporter strains of Drosophila melanogaster, ClockPER and ClockTIM, to track clock transcriptional activity using the intestine as a tissue of interest. These methods may be extended to other tissues in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bass J (2012) Circadian topology of metabolism. Nature 491(7424):348–356

    Article  CAS  PubMed  Google Scholar 

  2. Hardin PE (2011) Molecular genetic analysis of circadian timekeeping in Drosophila. In: Advances in genetics, vol 74. Elsevier, Amsterdam, pp 141–173

    Google Scholar 

  3. Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 159–184

    Google Scholar 

  4. Dubowy C, Sehgal A (2017) Circadian rhythms and sleep in Drosophila melanogaster. Genetics 205(4):1373–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164

    Article  CAS  PubMed  Google Scholar 

  6. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68(9):2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Callaway E, Ledford H (2017) Medicine Nobel awarded for work on circadian clocks. Nat News 550(7674):18

    Article  CAS  Google Scholar 

  8. Hao H, Allen DL, Hardin PE (1997) A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol 17(7):3687–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McDonald MJ, Rosbash M, Emery P (2001) Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter. Mol Cell Biol 21(4):1207–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allada R, White NE, So WV, Hall JC, Rosbash M (1998) A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93(5):791–804. https://doi.org/10.1016/S0092-8674(00)81440-3

    Article  CAS  PubMed  Google Scholar 

  11. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280(5369):1599–1603

    Article  CAS  PubMed  Google Scholar 

  12. Gekakis N, Saez L, Delahaye-Brown A-M, Myers MP, Sehgal A, Young MW, Weitz CJ (1995) Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270(5237):811–815

    Article  CAS  PubMed  Google Scholar 

  13. Lee C, Bae K, Edery I (1999) PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol Cell Biol 19(8):5316–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sehgal A, Rothenfluh-Hilfiker A, Hunter-Ensor M, Chen Y, Myers MP, Young MW (1995) Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270(5237):808–810

    Article  CAS  PubMed  Google Scholar 

  15. Cyran SA, Buchsbaum AM, Reddy KL, Lin M-C, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J (2003) vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112(3):329–341

    Article  CAS  PubMed  Google Scholar 

  16. Glossop NR, Houl JH, Zheng H, Ng FS, Dudek SM, Hardin PE (2003) VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator. Neuron 37(2):249–261

    Article  CAS  PubMed  Google Scholar 

  17. Lim C, Chung BY, Pitman JL, McGill JJ, Pradhan S, Lee J, Keegan KP, Choe J, Allada R (2007) Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr Biol 17(12):1082–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng X, Koh K, Sowcik M, Smith CJ, Chen D, Wu MN, Sehgal A (2009) An isoform-specific mutant reveals a role of PDP1ε in the circadian oscillator. J Neurosci 29(35):10920–10927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol 106(3):267–290

    Article  Google Scholar 

  20. Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94(1):97–107

    Article  CAS  PubMed  Google Scholar 

  21. Kloss B, Rothenfluh A, Young MW, Saez L (2001) Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron 30(3):699–706

    Article  CAS  PubMed  Google Scholar 

  22. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94(1):83–95

    Article  CAS  PubMed  Google Scholar 

  23. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935

    Article  CAS  PubMed  Google Scholar 

  24. Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M (2000) Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26(2):493–504

    Article  CAS  PubMed  Google Scholar 

  25. Peschel N, Chen KF, Szabo G, Stanewsky R (2009) Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr Biol 19(3):241–247

    Article  CAS  PubMed  Google Scholar 

  26. Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133(4):1250–1260

    Article  CAS  PubMed  Google Scholar 

  27. Polidarová L, Sládek M, Soták M, Pácha J, Sumová A (2011) Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int 28(3):204–215

    Article  PubMed  CAS  Google Scholar 

  28. Tognini P, Murakami M, Liu Y, Eckel-Mahan KL, Newman JC, Verdin E, Baldi P, Sassone-Corsi P (2017) Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab 26(3):523–538.e525

    Article  CAS  PubMed  Google Scholar 

  29. Hoogerwerf WA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Bartell PA, Cassone VM (2010) Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol-Gastrointest Liver Physiol 298(2):G143–G150

    Article  CAS  PubMed  Google Scholar 

  30. Pan X, Hussain MM (2009) Clock is important for food and circadian regulation of macronutrient absorption in mice. J Lipid Res 50(9):1800–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saito H, Terada T, Shimakura J, Katsura T, Inui K-i (2008) Regulatory mechanism governing the diurnal rhythm of intestinal H+/peptide cotransporter 1 (PEPT1). Am J Physiol-Gastrointest Liver Physiol 295(2):G395–G402

    Article  CAS  PubMed  Google Scholar 

  32. Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y, Vitaterna MH, Song S, Turek FW, Keshavarzian A (2013) Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS One 8(6):e67102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi M, Kotani K, Tsuzaki K, Takagi A, Motokubota N, Komai N, Sakane N, Moritani T, Nagai N (2015) Circadian rhythm genes CLOCK and PER3 polymorphisms and morning gastric motility in humans. PLoS One 10(3):e0120009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Capo F, Wilson A, Di Cara F (2019) The intestine of Drosophila melanogaster: an emerging versatile model system to study intestinal epithelial homeostasis and host-microbial interactions in humans. Microorganisms 7(9):336

    Article  CAS  PubMed Central  Google Scholar 

  35. Zwick RK, Ohlstein B, Klein OD (2019) Intestinal renewal across the animal kingdom: comparing stem cell activity in mouse and Drosophila. Am J Physiol-Gastrointest Liver Physiol 316(3):G313–G322

    Article  CAS  PubMed  Google Scholar 

  36. Casali A, Batlle E (2009) Intestinal stem cells in mammals and Drosophila. Cell Stem Cell 4(2):124–127

    Article  CAS  PubMed  Google Scholar 

  37. Lemaitre B, Miguel-Aliaga I (2013) The digestive tract of Drosophila melanogaster. Annu Rev Genet 47:377–404

    Article  CAS  PubMed  Google Scholar 

  38. Miguel-Aliaga I, Jasper H, Lemaitre B (2018) Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210(2):357–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buchon N, Osman D, David FP, Fang HY, Boquete J-P, Deplancke B, Lemaitre B (2013) Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 3(5):1725–1738

    Article  CAS  PubMed  Google Scholar 

  40. Marianes A, Spradling AC (2013) Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2:e00886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Buchon N, Osman D (2015) All for one and one for all: regionalization of the Drosophila intestine. Insect Biochem Mol Biol 67:2–8

    Article  CAS  PubMed  Google Scholar 

  42. Medema JP, Vermeulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474(7351):318–326

    Article  CAS  PubMed  Google Scholar 

  43. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439(7075):475

    Article  CAS  PubMed  Google Scholar 

  44. Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439(7075):470

    Article  CAS  PubMed  Google Scholar 

  45. De Navascués J, Perdigoto CN, Bian Y, Schneider MH, Bardin AJ, Martínez-Arias A, Simons BD (2012) Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. EMBO J 31(11):2473–2485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Goulas S, Conder R, Knoblich JA (2012) The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 11(4):529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315(5814):988–992

    Article  CAS  PubMed  Google Scholar 

  48. Biteau B, Jasper H (2014) Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila. Cell Rep 7(6):1867–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He L, Si G, Huang J, Samuel AD, Perrimon N (2018) Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555(7694):103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng X, Hou SX (2015) Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142(4):644–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beebe K, Lee W-C, Micchelli CA (2010) JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol 338(1):28–37. https://doi.org/10.1016/j.ydbio.2009.10.045

    Article  CAS  PubMed  Google Scholar 

  53. Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3(4):442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23(19):2333–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8(1):152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5(2):200–211

    Article  CAS  PubMed  Google Scholar 

  57. Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136(3):483–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang H, Grenley MO, Bravo M-J, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8(1):84–95

    Article  CAS  PubMed  Google Scholar 

  59. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137(7):1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  60. Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137(24):4135–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perochon J, Carroll L, Cordero J (2018) Wnt signalling in intestinal stem cells: lessons from mice and flies. Genes 9(3):138

    Article  PubMed Central  CAS  Google Scholar 

  62. Ren F, Wang B, Yue T, Yun E-Y, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107(49):21064–21069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137(24):4147–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian A, Jiang J (2014) Intestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut. Elife 3:e01857

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354(1):31–43

    Article  CAS  PubMed  Google Scholar 

  66. Karpowicz P, Zhang Y, Hogenesch JB, Emery P, Perrimon N (2013) The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 3(4):996–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Parasram K, Bernardon N, Hammoud M, Chang H, He L, Perrimon N, Karpowicz P (2018) Intestinal stem cells exhibit conditional circadian clock function. Stem Cell Rep 11(5):1287–1301

    Article  CAS  Google Scholar 

  68. Stokes K, Cooke A, Chang H, Weaver DR, Breault DT, Karpowicz P (2017) The circadian clock gene BMAL1 coordinates intestinal regeneration. Cell Mol Gastroenterol Hepatol 4(1):95–114

    Article  PubMed  PubMed Central  Google Scholar 

  69. Emery IF, Noveral JM, Jamison CF, Siwicki KK (1997) Rhythms of Drosophila period gene expression in culture. Proc Natl Acad Sci U S A 94(8):4092–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Giebultowicz JM, Hege DM (1997) Circadian clock in Malpighian tubules. Nature 386(6626):664

    Article  CAS  PubMed  Google Scholar 

  71. Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278(5343):1632–1635

    Article  CAS  PubMed  Google Scholar 

  72. Brandes C, Plautz JD, Stanewsky R, Jamison CF, Straume M, Wood KV, Kay SA, Hall JC (1996) Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16(4):687–692

    Article  CAS  PubMed  Google Scholar 

  73. Plautz JD, Straume M, Stanewsky R, Jamison CF, Brandes C, Dowse HB, Hall JC, Kay SA (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythm 12(3):204–217

    Article  CAS  Google Scholar 

  74. Maywood ES, Drynan L, Chesham JE, Edwards MD, Dardente H, Fustin J-M, Hazlerigg DG, O’Neill JS, Codner GF, Smyllie NJ, Brancaccio M, Hastings MH (2013) Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Proc Natl Acad Sci U S A 110(23):9547–9552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noguchi T, Michihata T, Nakamura W, Takumi T, Shimizu R, Yamamoto M, Ikeda M, Ohmiya Y, Nakajima Y (2010) Dual-color luciferase mouse directly demonstrates coupled expression of two clock genes. Biochemistry 49(37):8053–8061

    Article  CAS  PubMed  Google Scholar 

  76. Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H-K, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2:: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412

    Article  CAS  PubMed  Google Scholar 

  78. Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1):79–88

    Article  PubMed  CAS  Google Scholar 

  79. Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA, Chicheportiche R, Dayer J-M, Albrecht U, Schibler U (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3(10):e338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. LeSauter J, Yan L, Vishnubhotla B, Quintero JE, Kuhlman SJ, McMahon DG, Silver R (2003) A short half-life GFP mouse model for analysis of suprachiasmatic nucleus organization. Brain Res 964(2):279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sabado V, Nagoshi E (2018) Single-cell resolution fluorescence live imaging of drosophila circadian clocks in larval brain culture. J Vis Exp (131):e57015

    Google Scholar 

  82. So WV, Sarov-Blat L, Kotarski CK, McDonald MJ, Allada R, Rosbash M (2000) Takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol Cell Biol 20(18):6935–6944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. He L, Binari R, Huang J, Falo-Sanjuan J, Perrimon N (2019) In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. elife 8:e46181

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang C-C, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273(52):34970–34975

    Article  CAS  PubMed  Google Scholar 

  85. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364–368

    Article  CAS  PubMed  Google Scholar 

  86. Sehgal A, Price J, Young MW (1992) Ontogeny of a biological clock in Drosophila melanogaster. Proc Natl Acad Sci U S A 89(4):1423–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brett WJ (1955) Persistent diurnal rhythmicity in Drosophila emergence. Ann Entomol Soc Am 48(3):119–131

    Article  Google Scholar 

  88. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci U S A 40(10):1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5):669–679

    Article  CAS  PubMed  Google Scholar 

  90. Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang R-P, Todo T, Wei Y-F, Sancar A (1996) Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35(44):13871–13877

    Article  CAS  PubMed  Google Scholar 

  91. Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci U S A 95(11):6097–6102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cryb mutation identifies Cryptochrome as a circadian photoreceptor in Drosophila. Cell 95(5):681–692. https://doi.org/10.1016/S0092-8674(00)81638-4

    Article  CAS  PubMed  Google Scholar 

  93. Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282(5393):1490–1494

    Article  CAS  PubMed  Google Scholar 

  94. Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, Nomura T, Ikenaga M (1996) Similarity among the Drosophila (6-4) photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 272(5258):109–112

    Article  CAS  PubMed  Google Scholar 

  95. Frank KD, Zimmerman WF (1969) Action spectra for phase shifts of a circadian rhythm in Drosophila. Science 163(3868):688–689

    Article  CAS  PubMed  Google Scholar 

  96. O’Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147(3):603–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cognigni P, Bailey AP, Miguel-Aliaga I (2011) Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab 13(1):92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reiff T, Jacobson J, Cognigni P, Antonello Z, Ballesta E, Tan KJ, Yew JY, Dominguez M, Miguel-Aliaga I (2015) Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4:e06930

    Article  PubMed  PubMed Central  Google Scholar 

  99. Micchelli CA (2014) Whole-mount immunostaining of the adult Drosophila gastrointestinal tract. Methods 68(1):273–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805–814

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Karpowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parasram, K., Bachetti, D., Carmona-Alcocer, V., Karpowicz, P. (2022). Fluorescent Reporters for Studying Circadian Rhythms in Drosophila melanogaster. In: Solanas, G., Welz, P.S. (eds) Circadian Regulation. Methods in Molecular Biology, vol 2482. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2249-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2249-0_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2248-3

  • Online ISBN: 978-1-0716-2249-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics